Initial soil formation by biocrusts: Nitrogen demand and clay protection control microbial necromass accrual and recycling

Baorong Wang, Yimei Huang, Na Li, Hongjia Yao, Env Yang, Andrey V. Soromotin, Yakov Kuzyakov, Vladimir Cheptsov, Yang Yang, Shaoshan An

PII: S0038-0717(22)00064-5

DOI: https://doi.org/10.1016/j.soilbio.2022.108607

Reference: SBB 108607

To appear in: Soil Biology and Biochemistry

Received Date: 23 August 2021

Revised Date: 6 February 2022

Accepted Date: 12 February 2022

Please cite this article as: Wang, B., Huang, Y., Li, N., Yao, H., Yang, E., Soromotin, A.V., Kuzyakov, Y., Cheptsov, V., Yang, Y., An, S., Initial soil formation by biocrusts: Nitrogen demand and clay protection control microbial necromass accrual and recycling, *Soil Biology and Biochemistry* (2022), doi: https://doi.org/10.1016/j.soilbio.2022.108607.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

1	Initial soil formation by biocrusts: nitrogen demand
2	and clay protection control microbial necromass
3	accrual and recycling

4

Baorong Wang^{1,2}, Yimei Huang³, Na Li⁴, Hongjia Yao⁴, Env Yang⁴, Andrey V.
Soromotin⁵, Yakov Kuzyakov^{6,7}, Vladimir Cheptsov⁸, Yang Yang⁹, Shaoshan An ^{1, 4*}

7

8 Baorong Wang: wangbaorong92@163.com; Yimei Huang: ymhuang1971@nwsuaf.edu.cn; Na Li: 1356816040@qq.com; Hongjia 9 Yao: 963904270@gg.com; Env Yang: 2215003782@qq.com; Andrey V. Soromotin: 10 asoromotin@mail.ru; Yakov Kuzyakov: kuzyakov@gwdg.de; Vladimir Cheptsov: 11 cheptcov.vladimir@gmail.com; Yang Yang: yangyang@ieecas.cn; Shaoshan An: 12 shan@ms.iswc.ac.cn 13

14

¹State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,

16 Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of

17 Water Resources, Yangling 712100, China

² University of Chinese Academy of Sciences, Beijing 100049, China

19 ³ Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China,

20 Ministry of Agriculture, College of Natural Resources and Environment, Northwest

21 A&F University, Yangling 712100 Shaanxi, China

22	⁴ State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,						
23	Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100,						
24	China						
25	⁵ Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State						
26	University, 6 Volodarskogo Street, Tyumen, Russia						
27	⁶ Department of Agricultural Soil Science, Department of Soil Science of Temperate						
28	Ecosystems, University of Gottingen, 37077, Goettingen, Germany						
29	⁷ Agro-Technological Institute, RUDN University, 117198 Moscow, Russia						
30	⁸ Soil Science Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia						
31	⁹ State Key Laboratory of Loess and Quaternary Geology, Institute of Earth						
32	Environment, Chinese Academy of Sciences, Xi'an 710061, China						
33							
34	*Corresponding author: Shaoshan An						
35	E-mail address: <u>shan@ms.iswc.ac.cn</u>						
36	Tel: +86 29 87012871; Fax: +86 29 87012210.						
37	Address: No.26, Rd. Xinong, Yangling, Shaanxi, China. 712100						
38							
39	Declaration of competing interest						
40	The authors declare that they have no known competing financial interests or						
41	personal relationships that could have influenced the work reported in this paper.						
42							

43 Abstract

Microbial biomass is increasingly considered to be the main source of organic 44 carbon (C) sequestration in soils. Quantitative information on the contribution of 45 microbial necromass to soil organic carbon (SOC) formation and the factors driving 46 necromass accumulation, decomposition and stabilization during the initial soil 47 formation in biological crusts (biocrusts) remains unavailable. To address this 48 knowledge gap, we investigated the composition of microbial necromass and its 49 contributions to SOC sequestration in a biocrust formation sequence consisting of five 50 stages: bare sand, cyanobacteria stage, cyanobacteria-moss stage, moss-cyanobacteria 51 52 stage, and moss stage on sandy parent material on the Loess Plateau. The fungal and bacterial necromass C content was analyzed based on the cell wall biomarker amino 53 sugars. Microbial necromass was an important source of SOC, and was incorporated 54 55 into the particulate and mineral-associated organic C (MAOC). Because bacteria have smaller and thinner cell wall fragments as well as more proteins than fungi, bacterial 56 necromass mainly contributed to the MAOC pool, while fungal residues remained 57 more abundant in the particulate organic C (POC). MAOC did not always increase 58 with microbial necromass and POC more rapid accumulation than MAOC during 59 initial soil formation suggests that the clay content was the limiting factor for stable C 60 accumulation in this sandy soil. The necromass exceeding the MAOC stabilization 61 62 level was stored in the labile POC pool (especially necromass from fungi). Activities of four enzymes (i.e., β -1,4-glucosidase, β -1,4-N-acetyl-glucosaminidase, leucine 63 64 aminopeptidase, and alkaline phosphatase) increased with fungal and bacterial necromass, suggesting that the increasing activity of living microorganisms associated 65

with accelerated turnover and formation of necromass. Microbial N limitation raised 66 the production of N acquisition enzymes (e.g., β -1,4-N-acetyl-glucosaminidase and 67 leucine aminopeptidase) to break down necromass compounds, leading to further 68 increase of the nutrient pool in soil solution. The decrease of microbial N limitation 69 along the biocrusts formation chronosequence is an important factor for the 70 necromass accumulation during initial soil development. High microbial N demands 71 and insufficient clay protection lead to fast necromass reutilization by microorganisms 72 and thus, result in a low necromass accumulation coefficient, that is, the ratio of 73 74 microbial necromass to living microbial biomass (on average, 9.6). Consequently, microbial necromass contribution to SOC during initial soil formation by biocrust is 75 lower (12-25%) than in fully developed soil (33%-60%, literature data). Nitrogen (N) 76 77 limitation of microorganisms and an increased ratio between N-acquiring enzyme activity and microbial N, as well as limited clay protection, resulted in a low 78 contribution of microbial necromass to SOC by initial formation of biocrust-covered 79 sandy soil. Summarizing, soil development leads not only to SOC accumulation, but 80 also to increased contribution of microbial necromass to SOC, whereas the plant 81 biomass contribution decreases. 82

83

Keywords: extracellular enzyme activities; particulate organic carbon;
mineral-associated organic matter; initial soil formation; carbon sequestration;
microbial residues

87

88 **1. Introduction**

Biological soil crusts (hereafter referred to as "biocrusts") cover approximately 89 12% of Earth's terrestrial surface (Rodriguez-Caballero et al., 2018). Biocrusts are 90 91 composed of photoautotrophic communities such as cyanobacteria, chlorophyte algae, lichens and mosses and co-occur with heterotrophic bacteria, fungi, and archaea 92 (Belnap et al., 2008; Johnson et al., 2012; Pointing and Belnap, 2012). From the initial 93 94 CO_2 fixation by microorganisms (Liu et al., 2018) to the later increase of soil organic carbon (SOC) content by inputs from simple vascular plants (i.e., mosses, Liu et al., 95 2018), biocrusts accelerate C and nutrient biogeochemical cycling in arid and 96 semiarid regions (Grote et al., 2010; Duran et al., 2021) as well as in cold 97 environments. For example, a global meta-analysis suggested that the SOC content 98 under biocrusts generally increased by 71% compared to soil without crust cover (Xu 99 100 et al., 2022). Biocrusts-derived organic C consists mainly of carbohydrate-C and free fatty acids (Dümig et al., 2014; Baumann et al., 2021). The high content of 101 carbohydrate-C in well-developed biocrusts (e.g., mosses) is responsible for the high 102 water solubility of organic C, increasing downward movement and thus induces initial 103 soil formation (Dümig et al., 2014; Koester et al., 2021). 104

Microorganisms in soil biocrusts mediate C cycling processes by fixing atmospheric CO₂ (Duran et al., 2021) and degrading microbial, algae, lichen and moss residues (Pointing and Belnap, 2012). After microbial death and subsequent lysis and fragmentation, cell wall compounds contribute to the necromass pool and further to SOC sequestration (Miltner et al., 2012; Liang et al., 2017; Liang, 2020). Emerging

evidence reveals that microbial necromass contributes more than 50% of the SOC
sequestration in developed soils (Huang et al., 2019; Liang et al., 2019; Wang et al,
2021a). However, the contribution of microbial necromass to SOC accumulation
during initial soil formation in biocrust-dominated surfaces remains completely
unclear.

The balance between mineralization and stabilization of organic matter 115 influences the formation and decomposition of microbial necromass and its 116 contribution to SOC accumulation (Cui et al., 2020; Liang et al., 2020; Čapek et al., 117 2021). Microbial necromass can bind to clay minerals and thus majorly forms 118 119 mineral-associated organic C or becomes microaggregates stabilized in the soil (Ye et al., 2019; Buckeridge et al., 2020; Possinger et al., 2020; Yang et al., 2021). However, 120 this physically-protected necromass can be enzymatically broken down into fragments 121 that are released into soil solution and can be used by living microorganisms (Li et al., 122 2019; Yang et al., 2021). This is mainly because microbial necromass is an optimal 123 substrate with high contents of N and P, that can be exploited by microorganisms to 124 meet their C (energy) and nutrient requirements (Buckeridge et al., 2020; Cui et al., 125 2020). 126

Microbial necromass accumulation and decomposition are largely controlled by stoichiometric imbalances between microbial communities and their resources (Zechmeister-Boltenstern et al., 2015; Liang et al., 2020). The recycling of nutrients derived from dying microbial biomass or its residues is an important mechanism, by which microorganisms meet their nutrient requirements (López-Mondéjar et al., 2018;

Buckeridge et al., 2020; Čapek et al., 2021). The active part of the microbial community instantly recycles N from the decaying part of the community, when the available N forms are insufficient (Cui et al., 2020; Čapek et al., 2021). Microbial necromass reutilization is a more efficient strategy than obtaining N from non-readily decomposable soil organic matter (SOM) or alleviating N deficiency under labile C excess (Cui et al., 2020). Various extracellular enzymes, such as chitinases, decompose amino sugar polymers as an alternative N source for microorganisms

when readily available N is limited (Li et al., 2019).

Environmental conditions and microbial nutrient demands have a strong 140 influence on necromass recycling (Chen et al., 2019; Buckeridge et al., 2020; 141 López-Mondéjar et al., 2020; Čapek et al., 2021). For example, high N availability 142 accelerates microbial necromass accumulation (Ding et al., 2010; Fan et al., 2020), 143 but only if available C is sufficient for growth (Chen et al., 2020). A nutrient-rich 144 environment stimulates microbial growth with high biomass yield and necromass 145 accumulation (Shao et al., 2021). Low precipitation increases microbial necromass 146 recycling efficiency mainly because it limits nutrients and water availability, and 147 especially drying-rewetting cycles especially contribute to the formation of mineral 148 -associated SOM (Shahbaz et al., 2017; Buckeridge et al., 2020; Zhang et al., 2021). 149 Thus, nutrient deficiencies or environmental constraints stimulate the microbial 150 degradation of necromass by extracellular enzymes 151 (e.g., β -1,4-N-acetyl-glucosaminidase, leucine aminopeptidase, Li et al., 2019; Donhauser 152 153 et al., 2020). This is mainly because microbial necromass has high N and P contents,

and consists of proteins, fungal chitin, glycoproteins, nucleic acids and bacterial 154 peptidoglycans, whose hydrolysis greatly contributes to the formation of a 155 bioavailable dissolved organic N and P pool (Hu et al., 2017, 2020; Warren, 2021). 156 Additionally, rapid abiotic retention of microbial necromass by adsorption to soil 157 mineral particles (e.g., by drying-rewetting cycles) and localization in micro- and 158 nanopores increases the SOC stock (Kravchenko et al., 2019; Buckeridge et al., 159 2020;). Consequently, a low clay content increases microbial necromass 160 decomposition (Hu et al., 2020). Therefore, the microbial demand for C and N, 161 environmental C and N availability, and clay protection are the major factors that 162 determine the accumulation and decomposition of necromass. This is especially 163 crucial during initial soil formation because of low clay and organic matter contents, 164 and a consequently strongly limited possibility for biochemical protection and 165 encapsulation in the pores of microaggregates. Biocrusts play a crucial role during the 166 initial stages of soil formation and organic matter accumulation. However, 167 168 biocrust-dominated soils are strongly limited by low moisture and nutrients (Johnson et al., 2012) and consequently by the formation and accumulation of microbial 169 residues; thus, organic matter differs from that in already developed soils. 170

To clarify microbial necromass composition and its contribution to SOC accumulation, we investigated the biocrust formation chronosequence: bare sand, cyanobacteria, cyanobacteria-moss, moss-cyanobacteria, and moss. This is a typical sequence on the same soil, consisting of five stages that may take approximately 30 years in the semi-arid climate. Fungal and bacterial necromass was calculated based

on the microbial markers: glucosamine and muramic acid. Soil and environmental 176 factors affecting microbial necromass formation and its contributions to SOC 177 sequestration were explored based on the activities of extracellular enzymes, available 178 nutrients, and organic C pools. We addressed the following questions: (1) How does 179 microbial necromass, including fungal and bacterial necromass, contribute to SOC 180 accumulation during initial soil formation in the biocrust formation chronosequence? 181 (2) What are the effects of extracellular enzymes, available nutrients, particulate and 182 mineral-associated organic C on microbial necromass accumulation? (3) Which soil 183 properties are the most critical determinants of microbial necromass accumulation and 184 decomposition (based on the microbial nutrient limitation and their necromass 185 content)? Based on these questions, we developed the three hypotheses: (1) The 186 187 richness of higher plant species stimulates microbial growth and biomass accumulation by increasing belowground C allocation (roots and rhizodeposition), 188 leading to increased necromass formation and SOC accumulation (Prommer et al., 189 190 2019; Cotrufo et al., 2019; Sokol and Bradford, 2018). We hypothesized that the microbial necromass content and its contribution to SOC increase with the biocrust 191 formation chronosequence. (2) As nutrient availability importantly determines 192 microbial necromass accumulation (Shao et al., 2021; Wang et al., 2021b), their 193 association with mineral particles to form MAOC contributes to stable SOC (Yang et 194 al., 2021). We hypothesized that increased soluble nutrients during biocrusts 195 formation facilitate live microbial populations and hence necromass formation, which 196 contributes to increased SOC mainly in the form of MAOC. (3) As the stoichiometric 197

198	ratio of nutrients controls the necromass accumulation and its contribution to SOC
199	(Čapek et al., 2021; Cui et al., 2020; Deng and Liang, 2021), and clay protection is the
200	main mechanism for necromass medium- and long-term stabilization (Buckeridge et
201	al., 2020; Hu et al., 2020). Thus, we hypothesize that extracellular enzymes released
202	by microorganisms for nutrient mining and the clay content regulate the microbial
203	necromass recycling and accumulation during initial soil formation.

204

205 2. Material and methods

206 2.1 Site description and experimental design

The field experiment was performed in Liudaogou, Shenmu (northern Loess 207 Plateau), Shaanxi Province, China (38°46'-38°51' N, 110°21'-110°23'). It is the 208 center of the "wind-water erosion staggered area" of the Loess Plateau. This area has a 209 semiarid climate, where the mean annual precipitation is 409 mm, and the potential 210 evapotranspiration is 1337 mm. The mean annual temperature of the sites is 8.4 °C, 211 212 and the elevation is between 1,081 and 1,274 m. Biocrusts comprised of cyanobacteria and moss-dominated crust are widely distributed in this region. The soil 213 clay content (< 0.002 mm) of cyanobacteria, cyanobacteria-moss, moss-cyanobacteria, 214 215 and moss in the BSC horizons and 0-2 cm soil layer is shown in Table 1. The soil was classified as an arenosol according to the World Reference Base for Soil Resources 216 (IUSS Working Group WRB, 2015). 217

218	All sites have a similar orientation and inclination. Bare sand (~ $0-1$ years old)
219	and four biocrust formation stages, namely, cyanobacteria (~ $3-7$ years old),
220	cyanobacteria-moss (~ 8–13 years old), moss-cyanobacteria (~ 20–25 years old), and
221	moss (~ 30 years old), were evaluated. Cyanobacteria-moss and moss-cyanobacteria
222	stages refer to cyanobacteria-dominated biocrusts (coverage of cyanobacteria > 80%
223	and moss < 20%) and moss-dominated biocrusts (coverage of moss > 80% and
224	cyanobacteria $< 20\%$), respectively. The biocrust coverage was measured with a
225	point-intercept method using a 25 cm \times 25 cm gridded square (Belnap et al., 2001).
226	For the soil sample collection (August 2018), we randomly selected 5 representative
227	sites: 40 m \times 40 m squares in each site with a distance over 100 m between any two
228	sites. In each 40 \times 40 m plot, an "S"-shaped random-sampling strategy with 12–15
229	small sampling locations was chosen. The soil samples from the 12-15 sampling
230	points in each plot were mixed to obtain a representative sample of approximately 2
231	kg. Forty-five representative samples (4 stages \times 5 replicates = 20 samples for the
232	biocrust (BSC) horizon and 5 stages \times 5 replicates = 25 samples for the 0–2 cm soil
233	layer) including the BSC horizon and the 0-2 cm mineral soil layer underlying the
234	biocrusts (Gao et al., 2017), were collected. The BSC horizon refers to the biological
235	soil crust horizon, which consists of a colloidal complex of cryptogamic plants and
236	associated soil microscopic organisms with surface soil particles. The measured
237	biocrust thicknesses of cyanobacteria, cyanobacteria-moss, moss-cyanobacteria, and
238	moss were approximately 7.2±2.2 mm, 9.6±1.9 mm, 11.1±1.9 mm, and 10.9±1.8 mm,
239	respectively. After careful and thorough removal of moss tissues and residues from

the soil, the collected samples were put into a foam box with an ice pack and moved 240 to a 4 °C refrigerator within 24 h. Soil samples were separated into two parts: one part 241 was immediately analyzed for microbial biomass and extracellular enzyme activities 242 within one week. Another part of the air-dried sample was passed through a 2 mm 243 sieve for particle size and mineral-associated organic C determination. A part of the 244 soil sample was passed through the 0.15 mm size and tested for basic chemical 245 re-9100 properties and amino sugar analysis. 246

247

2.2 Analysis 248

The soil organic carbon (SOC) content was determined by dichromate oxidation 249 (Walkley and Black, 1934). Soil total nitrogen (N) and total phosphorus (P) contents 250 were measured using the Kjeldahl method and vanadium molybdate yellow 251 colorimetric method, respectively. The soil microbial biomass contents of C, N, and P 252 (MBC, MBN, and MBP) were measured using the chloroform-fumigation-extraction 253 method according to Brookes et al. (1982, 1985) and Vance et al. (1987). Briefly, two 254 sample parts were subjected to fumigation with CHCl₃ for 24 h at 25 °C, and two 255 256 others were not subjected to fumigation. The fumigated and nonfumigated soil samples were extracted in 50 ml 0.5 M K₂SO₄ at a ratio of 1:4 (W/V) for microbial 257 biomass C and N and 50 ml 0.5 M NaHCO3 at a ratio of 1:20 (W/V) for P. The 258 microbial biomass C, N and P contents were calculated according to the difference 259 between fumigated and nonfumigated samples and were adjusted using the 260

experimentally derived conversion factor E, where Ec, Ec and Ep = 0.45, 0.45 and
0.40, respectively (Fanin et al., 2013; Wu et al., 1990). The dissolved organic C, N
and inorganic P (DC, DN, and DP) contents were calculated from the unfumigated
samples (Chen et al., 2018; Hamel et al., 2006; Li et al., 2015).
Particulate organic C and mineral-associated organic C fractions were
determined according to the method of Sokol et al. (2019) and Sokol and Bradford.

(2018). In brief, soil samples (20 g air-dried soil) were shaken with 60 ml of the
chemical dispersant sodium hexametaphosphate for 18 h and then thoroughly rinsed
through a 0.053 mm sieve to separate the POC fraction (> 0.053 mm) and the MAOC
fraction (< 0.053 mm). The collected fractions were dried at 65 °C and then crushed
to 0.15 mm size for SOC determination.

The activities of four common hydrolytic enzymes associated with the microbial acquisition of C, N, and P from organic residues (including β -1,4-glucosidase (BG), β -1,4-N-acetyl-glucosaminidase (NAG), leucine aminopeptidase (LAP), and alkaline phosphatase (AP)) were measured in 96-well plates with appropriate fluorescently linked substrates and analyzed on a microplate fluorometer (DeForest and Moorhead, 2020; Li et al., 2019).

Amino sugar (e.g., glucosamine, galactosamine, mannosamine, and muramic acid) contents were determined according to the method of Zhang & Amelung (1996). Briefly, approximately 0.3 mg of N soil samples and standard soil samples (in which the amino sugar content is known (measured many times), used for calibration) were hydrolyzed for 8 h at 105 °C using 10 ml of 6 M HCl. After cooling, 100 µl internal

standard 1-inositol (1 mg/ml) was added. Then, the sample was filtered through 283 Whatman qualitative circles (12.5 cm diameter), and the filtrate was dried completely 284 by a rotary evaporator and redissolved in deionized water. The pH of the samples was 285 adjusted to 6.6-6.8, and the samples were centrifuged and freeze-dried. Then, 286 methanol was added to the freeze-dried residue and subsequently centrifuged to 287 extract the amino sugars from the residues. The extracted amino sugar was dissolved 288 μ l of the internal standard in 1 ml deionized water. and then 100 289 N-methyl-D-glucamine (1 mg/ml) was added. A standard series of amino sugars was 290 291 also established. Muramic acid was first dried under N₂ at 45 °C and then added to glucosamine, galactosamine, mannosamine, myo-inositol, N-methyl-D-glucamine, 292 and 1 ml of deionized water, in that order. The purified samples and standard series of 293 amino sugars were reacted with hydroxylamine hydrochloride and 4-(dimethylamino) 294 pyridine for 30 min at 75–80 °C, and the vial was shaken 4–5 times during the heating 295 process using a vortex instrument. The vial was cooled to room temperature, 1 ml of 296 297 acetic anhydride was added, the reaction was allowed to proceed at 75-80 °C for 1 hour; the vial was shaken 5-6 times during the heating process using a vortex 298 instrument. The vial was closed, and the recovered amino sugars were transformed 299 into aldononitrile derivatives, which were extracted with 1.5 mL of dichloromethane 300 from the aqueous solution. Excess anhydride was removed with 1 mol L⁻¹ HCl and 301 deionized water. The final organic phase was dried with N₂ at 45 °C and dissolved in 302 303 200 µL of ethyl acetate-hexane (1:1). The amino sugar derivatives were separated on a gas chromatograph (GC-2014C, Shimadzu, Japan) equipped with a DB-5 column (60 304

305	$m \times 0.25~mm \times 0.25~\mu m).$ Fungal and bacterial necromass were calculated based on
306	equations (1) and (2), according to Liang et al. (2019).
307	Fungal necromass C = (glucosamine /179.17 – 2 ×muramic acid /251.23) ×
308	179.17×9 (1)
309	Bacterial necromass $C = muramic acid \times 45$ (2)
310	The coefficients 179.17 and 251.23 in equation (1) are the molecular weights of
311	glucosamine and muramic acid, respectively; 9 is the conversion value of fungal
312	glucosamine to fungal necromass C; and 45 is the conversion value from muramic
313	acid to bacterial necromass C (Appuhn and Joergensen, 2006; Joergensen, 2018). The
314	total microbial necromass C (MNC) was estimated as the sum of fungal-derived C
315	(FNC) and bacterial-derived C (BNC). The proportion of total microbial necromass C
316	in SOC represents the microbial necromass contribution to SOC sequestration (Liang
317	et al., 2019).

318

319 2.3 Statistical analysis

One-way ANOVA followed by the post hoc Tukey HSD test ($\alpha = 0.05$) was carried out with IBM SPSS Statistics 21 (SPSS, Chicago, Illinois USA) software to test the significant differences in soil chemical properties, microbial biomass, extracellular enzyme activities, available nutrients, POC, MAOC, microbial necromass C and amino sugars in the biocrust formation stages. Regression analysis was performed using IBM SPSS Statistics 20 software to assess the relationships

between SOC, POC and MAOC and fungal, bacterial, and microbial necromass C. To 326 explore the clay saturation with MAOC, regression analysis was performed to assess 327 the relationships between SOC, clay contents, POC, MAOC, POC/MAOC and fungal 328 and bacterial necromass C. The regressions were considered significant at a level of p 329 < 0.05. Redundancy analysis (RDA) was performed to explore the relationships 330 among microbial biomass, extracellular enzymes, available nutrients, POC and 331 MAOC (explanatory variables), microbial necromass and amino sugars (response 332 variables). Prior to analysis, detrended correspondence analysis (DCA) was used to 333 334 select the appropriate response model for the subsequent direct gradient analyses. The length of the first DCA ordination axis was < 3 for the necromass and amino sugar 335 dataset, which indicated a linear response along the axis. Forward selection in this 336 337 model was used to determine the most significant factors that influenced amino sugars and microbial necromass C. The variables were incorporated stepwise into the model 338 according to their increasing effect on the variance and their significance tested by the 339 340 Monte Carlo permutation test (Legendre and Legendre, 2012).

Stoichiometric analysis of soil enzyme activities was used to identify potential C, N and P limitations in the soil. The enzymatic stoichiometric vector characteristics (including vector length and vector angle) were calculated according to Moorhead et al. (2016). These values were used as a rough reflection of microbial nutrient limitation: High vector length implies microbial C limitation, whereas a vector angle lower than 45° indicates N limitation; otherwise, P limitation dominates (Bai et al., 2021). By using 1.0 as a horizontal and vertical baseline along the axis of enzyme

activity ratios (NAG+LAP/AP as x-axis and BG/NAG+LAP as y-axis), four groups of 348 microbial resource limitations (N limitation, P limitation, C and N colimitation and C 349 and P colimitation) were categorized (Bai et al., 2021; Cui et al., 2020). The vector 350 length and vector angle are calculated following Equations (1) and (2): 351 Vector length= $\sqrt{(\ln(BG)/\ln(NAG + LAP))^2 + (\ln(BG)/\ln(AP))^2}$ 352 (1)Vector angle = DEGREES {ATAN2[$(\ln(BG) / \ln(AP), (\ln(BG) / \ln(NAG+LAP))$ } (2) 353 The necromass accumulation coefficient (NAC) was calculated using Equation 354 (3) Zhang et al. (2021). 355 $NAC = \frac{C_{Necromass}}{C_{living Biomass}}$ Equation (3) 356

To test the strength of microbial homeostasis in biocrust-covered sandy soil, we calculated the degree of stoichiometric homeostasis for microorganisms using the 1/H coefficient (Equation (4)). The 1/H coefficient is the slope of the regression between log (resource ratio; C/N in bulk soil, dissolved matter and enzyme) and log (biomass ratio; microbial C/N ratio) and should equal a value between zero and one (Makino et al., 2003; Persson et al., 2010):

$$\log(y) = \frac{1}{H}\log(x) + \log(c) \qquad \text{Equation (4)}$$

where x is the resource C/N stoichiometry, y is the microorganisms' C/N stoichiometry, and c is a constant. If the regression relationship was nonsignificant (p > 0.05), 1/H was set to zero, and the microorganisms were considered "strictly homeostatic." All datasets with significant regressions and 0 < 1/H < 1 were arbitrarily classified as follows: 0 < 1/H < 0.25 "homeostatic", 0.25 < 1/H < 0.5"weakly homeostatic", 0.5 < 1/H < 0.75 "weakly plastic", and 1/H > 0.75 "plastic" 370 (Persson et al., 2010).

371

372 **3. Results**

373 3.1 Microbial necromass and its contribution to organic C accumulation

374 Initial soil formation by biocrusts increased the fungal and bacterial necromass contents in the 0–2 cm soil layer compared to bare sand (Fig. 1a-b, p < 0.05). 375 Although SOC and microbial biomass increased from the cyanobacteria to moss stage 376 (Table 1, p < 0.05), there were no differences in the fungal necromass contents 377 between formation stages in the BSC horizon (Fig. 1a, p > 0.05). Except for the bare 378 sand, bacterial necromass contents remained constant in the BSC horizon but 379 decreased in the 0-2 cm mineral soil from the cyanobacteria stage to the moss stage 380 (Fig. 1b). Other microbial cell molecules, such as galactosamine and mannosamine 381 contents, remained stable over the course of biocrust formation (Table 1). The 382 microbial necromass C contribution to SOC ranged from 12% (in bare sand) to 25% 383 in various biocrust stages (Fig. 1c). The fungal:bacterial necromass ratio at 0-2 cm 384 increased from the cyanobacteria to the moss stage, indicating that larger fungal 385 necromass contributed to increased SOC (Fig. 1d, p < 0.05). 386

The contribution of bacterial necromass C to SOC ranged from 2.6% (in bare sand) to \sim 7.7%, while the contribution of fungi at various biocrust stages ranged from 10% (bare sand) to 21% (Fig. 1e-f). Fungal necromass (> 67% of the total necromass) consistently contributed more to SOC than did bacterial necromass C (Fig. 1g). The

contribution of bacterial necromass C to SOC and microbial necromass in the BSC 391 horizon was higher than that in the 0-2 cm soil layer, indicating that bacteria 392 contributed more to SOC formation in the BSC than in the underlying soil (Fig. 1e). 393 The ratio of microbial necromass C/microbial biomass C (necromass accumulation 394 per unit of microbial biomass C: necromass accumulation coefficient) decreased from 395 the cyanobacteria stage to the moss stage (Fig. 1h, p < 0.05). The necromass 396 accumulation coefficient increased from the BSC horizon to the mineral soil (0-2 cm). 397 This suggests relatively higher necromass stabilization and preservation in 0-2 cm 398 399 mineral soil (Fig. 1h).

400

401 3.2 Extracellular enzymes and microbial nutrient limitation

The enzyme activities of NAG and AP in both layers and LAP in the 0-2 cm 402 layer increased from bare sand to the moss stage (Fig. 2b-d, p < 0.05). The 403 C-acquiring enzyme (BG) activity /microbial biomass C ratio (specific enzyme 404 activity per microbial biomass unit: microbial enzyme activity coefficient) increased 405 from the BSC horizon to the 0-2 cm layer, suggesting higher microbial C demands in 406 the subsurface layer of biocrust-covered sandy soil (Fig. 2e). The N-acquiring enzyme 407 (NAG+LAP) activity/microbial biomass N ratio increased from cyanobacteria to moss 408 in the BSC horizon, suggesting higher microbial N demands with biocrust formation 409 sequences (Fig. 2f). 410

411	The decreasing vector length of the enzyme ratio in the 0–2 cm soil depth from
412	the bare sand to moss stage suggests a decrease in C limitation for microorganisms
413	with biocrust formation (Fig. 3a). The vector angles of the enzyme ratio were always
414	less than 45° (Fig. 3b), indicating that microbial N limitation was common in all
415	biocrust stages but it tends to decrease due to the increase in N-acquisition enzymes
416	and their enzymatic coefficients with biocrust formation (Fig. 2e-f and Fig. 3b).
417	Microbial C and N colimitation and a higher C- and N-acquiring enzyme
418	activity/microbial biomass C and N ratio were found in bare sand (Figs. 2e, f and 3e,
419	f), suggesting that biocrust formation eliminates the microbial C limitation, whereas N
420	limitation remains (Fig. 3c-d). Consequently, stronger microbial nutrient limitation
421	leads to a higher recycling intensity of necromass, decreasing the contribution of
422	necromass to SOC.

423

424 3.3 Effects of biocrust formation and microbial necromass accumulation on soil 425 organic matter fractions

The POC and MAOC increased with SOC content (Fig. 4a, p < 0.001). The fungal, bacterial, and total microbial necromass C increased with SOC content (Fig. 4b; p < 0.001), indicating the critical role of microbial necromass in SOC formation in biocrust-dominated soil. Bacterial necromass was more strongly correlated with MAOC, while fungal necromass was more strongly correlated with POC (Fig. 4c-d, p< 0.001). Similarly, POC and MAOC increased with fungal, bacterial, and microbial

432	necromass C (Fig. 4c-d; $p < 0.001$). Microbial necromass was more correlated with
433	POC than MAOC (Fig. 4a-b and Table 1) and MAOC did not always increase with
434	necromass (Fig. 5a-b), suggesting that more necromass was stabilized by forming
435	POC due to the low clay content (only 1–2%). The POC/MOAC ratio increased with
436	SOC content (Fig. 5c), indicating that POC accumulated faster than MAOC.
437	Microbial necromass C increased with clay and silt contents (excluding bacterial
438	necromass C in the BSC horizon; Fig. 5d-e, $p < 0.01$), indicating that a higher clay
439	and silt content could protect fungal and bacterial necromass and further benefit their
440	accumulation.

441

442 3.4 Accumulation of microbial necromass depending on dissolved N content

Microbial necromass C increased with living biomass, enzyme activities and 443 dissolved nutrients, indicating that a large living microbial biomass can stimulate 444 necromass accumulation (Fig. S1a-i, p < 0.001). Dissolved N was the most important 445 factor affecting microbial necromass accumulation in BSC horizon, while other soil 446 447 properties (i.e., MBN, DN, MBC, DC, clay contents, LAP, and POC) explained microbial necromass stabilization at 0–2 cm (RDA results, Fig. 6 a-d, p < 0.01). The 448 POC, but not MAOC, was an important factor influencing microbial necromass 449 accumulation in the BSC horizon and 0-2 cm layer, suggesting that the POC plays an 450 important role in necromass stabilization (Fig. 6 c-d, p < 0.01). 451

453 **4. Discussion**

454 4.1 Microbial necromass contents and their contribution to the SOC pool

Microbial necromass formation is determined by biomass production, death of 455 microorganisms, and cell residue decomposition (Chen et al., 2021; Shao et al., 2021). 456 Enzyme activities increase with living microbial biomass and necromass (Fig. S1). 457 Consequently, rapid turnover of living microbial biomass produces more necromass. 458 A greater amount of living biomass and faster microbial growth result in higher 459 460 biomass production and further necromass accumulation, thereby contributing to SOC sequestration (Prommer et al., 2019; Chen et al., 2020). The microbial necromass to 461 SOC ratio in the BSC horizon (from cyanobacteria (3–7 years old) to moss (~30 years 462 463 old)) decreased, and the fungal:bacterial necromass ratio in the 0-2 cm soil layer increased (from bare sand to moss) with biocrust formation (Fig. 1). Consequently, 464 the contribution of undecomposed moss residues to SOC accumulation increased, and 465 thus fungal necromass especially accumulated (Fig. 1f). This is explained by the 466 decomposition of complex organic matter (moss residues) that is dominated by fungi 467 (López-Mondéjar et al., 2018; Algora Gallardo et al., 2021). Fungi are better adapted 468 to degrade persistent plant biomass and organic matter, as well as hydrophobic 469 substances, as they produce specific carbohydrate-active hydrolases (López-Mondéjar 470 et al., 2020) and (per)oxidases (Xia et al., 2020; Deng et al., 2021). Bacteria 471 472 contributed more to SOC formation in the surface (BSC horizon) than in the subsurface (0-2 cm mineral layer) of biocrust-dominated soil (Fig. 1e) because 473 bacteria tend to recycle microbial necromass and insufficient clay protection in the 474 22

BSC horizon, thus accelerating the turnover of living and dead biomass 475 (López-Mondéjar et al., 2018; López-Mondéjar et al., 2020); 476

Microbial necromass is an important organic matter source in biological 477 crust-dominated sandy soil that contributes to SOC sequestration (Figs. 1 and 4) by 478 incorporating into the POC and MAOC (Figs. 4 and 5). However, inconsistent with 479 our first hypothesis, microbial necromass content and its contribution to SOC did not 480 increase with the biocrust formation chronosequence (Fig. 1). The contributions of 481 microbial necromass to SOC in the BSC horizon and 0-2 cm mineral soil layer range 482 483 from 12% to 25%, much lower than their contributions to fully developed soils: > 50%in croplands and grasslands and $\sim 35\%$ in forests (reviewed by Khan et al., 2016; 484 Liang et al., 2019; Huang et al., 2019). This phenomenon is mainly due to the (i) low 485 nutrient content and availability of the initial soil formation may limit the microbial 486 necromass accumulation compared to well-developed soils (Buckeridge et al., 2020; 487 Shao et al., 2021; Wang et al, 2021); (ii) lower necromass accumulation coefficients 488 show limiting microbial residue stabilization during the initial soil formation because 489 of the very low clay content and poor microaggregation (Figs. 1 and 7). For instance, 490 the necromass accumulation coefficient in biocrust-covered sandy soils of the Loess 491 Plateau is 9.6 (Fig. 1), which is lower than those of the Qinghai-Tibet Plateau (16), 492 Mongolian grassland soils (24), and other grasslands worldwide (30) (Zhang et al., 493 2021). Consequently, the contribution of microbial necromass to SOC increases in the 494 following order: Loess Plateau biocrust-covered sandy soils (22%) < Qinghai-Tibet 495 Plateau (33%) < Mongolian grassland (49%) < other grasslands worldwide (58%)(Fig. 496

1; Zhang et al., 2021). This increase corresponds to the progress of pedogenesis and 497 formation of secondary clay particles and water stable aggregates. The necromass 498 accumulation coefficient is regulated by biotic (microbial nutrient demands, etc.) and 499 abiotic (soil nutrient availability, clay content, etc.) factors (Buckeridge et al., 2020; 500 Zhang et al., 2021). The limited N content of sandy soils is mainly due to insufficient 501 inputs and the low diversity of N fixation pathways (Steven et al., 2012; Li et al., 502 2020). Thus, the lower accumulation efficiency of microbial necromass C in our soil 503 is because of the sandy texture (low clay content, poor aggregation), which is related 504 505 to poor necromass preservation (Fig. 5) and/or high microbial N demands (Figs. 2 and 3) 506

507

508 4.2 Microbial necromass stabilization and preservation

Microbial necromass contributes to SOC sequestration by forming particulate 509 and mineral-associated organic C (Figs. 4 and 5; Lavallee et al., 2019). The binding of 510 microbial necromass to soil particles is the main mechanism for their medium- and 511 512 long-term stabilization (Chen et al., 2020; Samson et al., 2020; Yang et al., 2021), in which organo-mineral interfaces are dominated by N-enriched residues (Buckeridge et 513 al., 2020; Possinger et al., 2020). Although POC and MAOC increased with the 514 microbial necromass C contents, necromass was more closely correlated with POC 515 than with MAOC (Fig. 4). Unlike in developed soils, in which more necromass is 516 found in the MAOC pool (Lavallee et al., 2019; Samson et al., 2020), this result 517

suggests that more necromass is present in biocrust-dominated soils through POC 518 formation (Figs. 5 and 6). This is explained by (i) microbial necromass recycling or 519 destabilization decreasing its accumulation (Figs. 4 and 7); (ii) the accumulation of 520 MAOC may become saturation due to the limitation of clay and silt content (Fig. 5a; 521 Craig et al., 2021); (iii) formation of POC by part of the microbial necromass (e.g., 522 fungal hyphae), which plays an important role in SOC accrual (Lavallee et al., 2019; 523 Samson et al., 2020); (iv) the retained thin soil water films in aggregates allowed 524 continued microbial recycling of necromass from the MOAC (Manzoni et al., 2012), 525 526 while the POC decomposition may be limited by low soil water because water-driven microbial nutrient transformations in biocrusts (Maier et al., 2021). This result may 527 suggest that the bacterial necromass mainly contributed to the MAOC pool, while 528 fungi contributed more to POC (Fig. 4). This is possibly because (i) bacteria are 529 smaller and have thinner cell wall fragments compared to fungi (Schweigert et al., 530 2015); (ii) bacteria inhabit biofilms and soil aggregate pores (Guhra; et al., 2021; 531 532 Yang et al., 2021), because the attachment of bacteria cells to mineral surfaces and their active habitat formation increases the soil aggregation potentially reducing the 533 bacterial necromass decomposition (Krause et al., 2019). 534

In the BSC horizon, MAOC did not continuously increase with microbial necromass, presumably due to saturation of MAOC, because of the limited amount of clay and silt particles in biological crust dominated sandy soil (Fig. 5a; Matus, 2021). Microbial necromass stabilization might be limited by the direct sorption of exudates (e.g., released from moss, algae) outcompetes sorption of microbial residues on clay

or silt particles (Walker et al., 2003; Kubiak-Ossowska et al., 2017; Guhra; et al., 540 2021). Departure from our second hypothesis, the POC increased with microbial 541 necromass (especially fungal necromass) and the POC/MAOC ratio increased with 542 SOC, suggesting that the poor preservation conditions (e.g., limited clay content) 543 leads to more necromass remaining as POC (Figs. 5 and 6). Microbial necromass 544 decomposition is slow in soils with high clay content and formation of stable 545 microaggregates (Hu et al., 2020) because adsorption on clays and protection in 546 microaggregates are key factors controlling physico-chemical and physical 547 548 stabilization (Doetterl et al., 2015). Indeed, microbial necromass-formed POC lack physico-chemical protection, which leads to their direct contact with living 549 microorganisms and increases the likelihood of their degradation by exoenzymes 550 551 (Kuzyakov and Mason-Jones, 2018; Lavallee et al., 2019). The living microbial biomass increases, but necromass remains stable, from the cyanobacteria to moss 552 stage in BSC horizons (Fig. 1 and Table 1), suggesting a rapid necromass recycling 553 554 because of the limited protection by clay or microaggregates as a result of low clay content during initial soil formation (Figs. 5 and 7). This phenomenon occurs mainly 555 because POC generally has rapid turnover (Gunina and Kuzyakov, 2014; Poeplau et 556 al., 2018), whereas the amounts of clay and silt particles (Fig. 5) limit necromass 557 preservation, especially during initial soil formation (Lavallee et al., 2019). 558

559

560 4.3 Microbial necromass accumulation regulated by dissolved N

561

In line with our third hypothesis, extracellular enzyme stoichiometry revealed

that i) microbial N limitation is common in biological crust dominated sandy soil (Fig. 562 3), and ii) N-acquiring enzyme activities increased with biocrust formation, 563 accelerating necromass decomposition and alleviating microbial N limitation during 564 initial soil formation (Fig. 2). The release of extracellular enzymes by microorganisms 565 to mineralize organic compounds is an important mechanism to maintain homeostasis 566 of microbial C:N:P ratio and overcome nutrient limitations (Mooshammer et al., 2014; 567 Zechmeister-Boltenstern et al., 2015). Fungal and bacterial necromass increased with 568 the soil DC and DN levels (Fig. S1), suggesting that necromass decomposition greatly 569 570 contributes to the formation of a bioavailable nutrient pool. Microbial necromass is richer in N than SOM is (Cotrufo et al., 2019; Liang et al., 2019), and therefore, N 571 mining from necromass is a more efficient strategy than N acquisition from 572 573 recalcitrant soil organic matter (Buckeridge et al., 2020; Cui et al., 2020). Microbial demand for N leads to necromass mineralization when the available N forms are 574 insufficient (Cui et al., 2020; Čapek et al., 2021). 575

576 In view of microbial N limitation and increased N-acquiring (NAG+LAP) enzyme activity/microbial biomass N ratio, as well as poor necromass preservation 577 (Figs. 2, 5 and 7), dissolved N is the most important factor influencing necromass 578 abundance in biocrust-covered sandy soils (Fig. 6). This is mainly because available 579 nutrients require less energy to use than bulk SOM (Liang et al., 2017), which 580 requires microorganisms to produce enzymes (Kaiser et al., 2014; Mooshammer et al., 581 2014; Čapek et al., 2021). Under N-limited conditions, microorganisms synthesize 582 and release extracellular enzymes (e.g., NAG and LAP) to mobilize microbial 583

necromass for their N demand (Fig. 2). Consequently, N availability strongly affects 584 the accumulation or reutilization of microbial necromass during the initial formation 585 of biocrust-covered sandy soil. This is mainly because the homoeostatic growth of 586 microorganisms requires an appropriate ratio (e.g., microbial biomass C/N ratio 587 ranging from 2.4 to 4.3 in the BSC horizon and 0-2 cm soil layer) of nutrients (e.g., C, 588 N, and P) to maintain the stoichiometric balance that drives microbial metabolic 589 processes (Mooshammer et al., 2014; Liang et al., 2020). For example, the 590 homeostasis index (1/H) ranged from 0 to 0.24, indicating that the microbial C/N 591 592 stoichiometry in biocrust-covered sandy soil was homeostatic (Fig. S2). Microbial community growth on various resources with extremely variable or low C/nutrient 593 ratios cannot be achieved solely via nonhomeostatic methods (Mooshammer et al., 594 595 2014; Zechmeister-Boltenstern et al., 2015). Microorganisms require stoichiometric homeostasis to maintain normal life activities by adjusting their own elemental 596 utilization efficiency or mobilizing resources by producing specific extracellular 597 enzymes (Mooshammer et al., 2014). Therefore, microorganisms maintain C/N 598 stoichiometric homeostasis by using bioavailable soluble substances or microbial 599 necromass (Kaiser et al., 2014; Chen et al., 2019) as well as nutrient recycling (Chen 600 et al., 2019; Bilyera et al., 2021). Potential shifts in microbial C/N stoichiometry and 601 dissolved organic C/N influence necromass accumulation (Fig. S3) because 602 stoichiometry controls nutrient mining from necromass (Cui et al., 2020; Čapek et al., 603 604 2021).

605

606 5 Conclusions

Microbial biomass, extracellular enzymes, available nutrients, particulate and 607 mineral particles determine the accumulation and recycling of necromass during 608 609 initial soil formation. Microbial N limitation was common in all biocrust stages, but it decreased during biocrust development due to the increase in N-acquisition enzymes. 610 MAOC did not always increase, but POC increased with microbial necromass, 611 suggesting that the MAOC increase was limited by low clay content and consequently, 612 led to stronger POC than MAOC accumulation in the BSC horizon. A potential 613 explanation for the accumulation of POC relative to MAOC may also be that the 614 retained thin soil water films in aggregates allowed necromass recycling from the 615 MOAC, whereas POC decomposition might be limited by low soil water, but this 616 needs further investigation in the future. Microbial N limitation and necromass 617 destabilization (e.g., insufficient clay protection) lead to rapid necromass reutilization 618 by microorganisms, resulting in a low necromass accumulation coefficient in 619 biocrust-covered sandy soil. Microorganisms meet their nutrient demands by releasing 620 extracellular enzymes to degrade necromass, and its decomposition forms a pool of 621 dissolved nutrients. As a result, the microbial necromass C contributes to SOC in 622 biocrust-covered sandy soil much lower than in fully developed soils. Consequently, 623 the initial soil formation by biocrusts is characterized by strong N limitation and low 624 clay content, leading to high activities of enzymes, especially of the N cycle, poor 625 protection and stabilization of microbial necromass, leading to intensive reutilization 626 and thus a low contribution of microbial residues to SOC sequestration. 627

628

629 Acknowledgments

This research was supported by the National Natural Science Foundation of 630 China [41877074 and 42077072]. Vladimir Cheptsov (VC) was supported by the state 631 assignment "Soil microbiomes: genomic diversity, functional activity, geography and 632 biotechnological potential" (No. 121040800174-6). Yakov Kuzyakov (YK) thanks the 633 support of the "RUDN University Strategic Academic Leadership Program". The 634 publication was prepared with the support of the Tyumen Oblast Government project 635 "TerrArctic" (West-Siberian Interregional Science and Education Center's project No. 636 89-DON) and project: Stability and Functions of Soil Carbon in Agroecosystems of 637 Russia (CarboRus, 075-15-2021-610). 638

639 **References**:

640	Algora Gallardo, C., Baldrian, P., López-Mondéjar, R., 2021. Litter-inhabiting fungi
641	show high level of specialization towards biopolymers composing plant and
642	fungal biomass. Biology and Fertility of Soils 57, 77–88.

- Appuhn, A., Joergensen, R.G., 2006. Microbial colonisation of roots as a function of
 plant species. Soil Biology and Biochemistry 38, 1040–1051.
- Bai, X., Dippold, M.A., An, S., Wang, B., Zhang, H., Loeppmann, S., 2021.
- Extracellular enzyme activity and stoichiometry: The effect of soil microbial
 element limitation during leaf litter decomposition. Ecological Indicators 121,
 107200.
- 649 Baumann, K., Eckhardt, K.U., Acksel, A., Gros, P., Glaser, K., Gillespie, A.W.,
- Karsten, U., Leinweber, P., 2021. Contribution of biological soil crusts to soil
 organic matter composition and stability in temperate forests. Soil Biology and
 Biochemistry 160, 108315.
- Belnap, J., Phillips, S.L., Flint, S., Money, J., Caldwell, M., 2008. Global change and
 biological soil crusts: Effects of ultraviolet augmentation under altered
 precipitation regimes and nitrogen additions. Global Change Biology 14,
 656 670-686.
- Belnap, J., Rosentreter, R., Leonard, S., Kaltenecker, J., Williams, J., Eldridge, D.,
 2001. Biological soil crusts: ecology and management. US Dept. of Interior TR.
- Bilyera N., Dippold M.A., Blaicher J., Maranguit D., Kuzyakov Y. Blagodatskaya E.

660	2021. Microbial tradeoffs in internal and external use of resources regulated by P
661	and C availability. European Journal of Soil Biology 106, 103353.
662	Brookes, P.C., Landman, A., Pruden, G., Jenkinson, D.S., 1985. Chloroform
663	fumigation and the release of soil nitrogen: A rapid direct extraction method to
664	measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17,
665	837–842.
666	Brookes, P.C., Powlson, D.S., Jenkinson, D.S., 1982. Measurement of microbial
667	biomass phosphorus in soil. Soil Biology and Biochemistry 14, 319-329.
668	Buckeridge, Kate M., La Rosa, A.F., Mason, K.E., Whitaker, J., McNamara, N.P.,
669	Grant, H.K., Ostle, N.J., 2020. Sticky dead microbes: Rapid abiotic retention of
670	microbial necromass in soil. Soil Biology and Biochemistry 14, 107929.
671	Buckeridge, Kate M, Mason, K.E., Mcnamara, N.P., Ostle, N., Puissant, J., Goodall,
672	T., Grif, R.I., Stott, A.W., Whitaker, J., 2020. Environmental and microbial
673	controls on microbial necromass recycling, an important precursor for soil
674	carbon stabilization. Communications Earth & Environment 1, 1–9.
675	Čapek, P., Choma, M., Tahovská, K., Kaňa, J., Kopáček, J., Šantrůčková, H., 2021.
676	Coupling the resource stoichiometry and microbial biomass turnover to predict
677	nutrient mineralization and immobilization in soil. Geoderma 385, 114884.
678	Chen, H., Zhao, X., Chen, X., Lin, Q., Li, G., 2018. Seasonal changes of soil
679	microbial C, N, P and associated nutrient dynamics in a semiarid grassland of
680	north China. Applied Soil Ecology 128, 89–97.

681	Chen, J., Ji, C., Fang, J., He, H., Zhu, B., 2020. Dynamics of microbial residues
682	control the responses of mineral-associated soil organic carbon to N addition in
683	two temperate forests. Science of the Total Environment 748, 141318.
684	Chen, J., Seven, J., Zilla, T., Dippold, M.A., Blagodatskaya, E., Kuzyakov, Y., 2019.
685	Microbial C:N:P stoichiometry and turnover depend on nutrients availability in
686	soil: A ¹⁴ C, ¹⁵ N and ³³ P triple labelling study. Soil Biology and Biochemistry 131,
687	206–216.
688	Chen, X., Hu, Y., Xia, Y., Zheng, S., Ma, C., Rui, Y., He, H., Huang, D., Zhang, Z.,
689	Ge, T., Wu, J., Georg, G., Kuzyakov, Y., Su, Y., 2021. Contrasting pathways of
690	carbon sequestration in paddy and upland soils. Global Change Biology 27,
691	2478-2490.
692	Chen, X., Xia, Y., Rui, Y., Ning, Z., Hu, Y., Tang, H., He, H., Li, H., Kuzyakov, Y.,
693	Ge, T., Wu, J., Su, Y., 2020. Microbial carbon use efficiency, biomass turnover,
694	and necromass accumulation in paddy soil depending on fertilization.
695	Agriculture, Ecosystems and Environment 292, 106816.
696	Cotrufo, M.F., Ranalli, M.G., Haddix, M.L., Six, J., Lugato, E., 2019. Soil carbon
697	storage informed by particulate and mineral-associated organic matter. Nature
698	Geoscience 12, 989-994.
699	Craig, M.E., Mayes, M.A., Sulman, B.N., Walker, A.P., 2021. Biological mechanisms
700	may contribute to soil carbon saturation patterns. Global Change Biology 27,
701	2633-2644.

- 702 Cui, J., Zhu, Z., Xu, X., Liu, S., Jones, D.L., Kuzyakov, Y., Shibistova, O., Wu, J., Ge,
- T., 2020. Carbon and nitrogen recycling from microbial necromass to cope with
 C:N stoichiometric imbalance by priming. Soil Biology and Biochemistry 142,
 107720.
- Cui, Y., Wang, X., Zhang, X., Ju, W., Duan, C., Guo, X., Wang, Y., Fang, L., 2020.
 Soil moisture mediates microbial carbon and phosphorus metabolism during
 vegetation succession in a semiarid region. Soil Biology and Biochemistry 147,
 107814.
- DeForest, J.L., Moorhead, D.L., 2020. Effects of elevated pH and phosphorus
 fertilizer on soil C, N and P enzyme stoichiometry in an acidic mixed mesophytic
 deciduous forest. Soil Biology and Biochemistry 150, 107996.
- Deng, S., Zheng, X., Chen, X., Zheng, S., He, X., Ge, T., Kuzyakov, Y., Wu, J., Su,
- Y., Hu, Y., 2021. Divergent mineralization of hydrophilic and hydrophobic
 organic substrates and their priming effect in soils depending on their
 preferential utilization by bacteria and fungi. Biology and Fertility of Soils 57,
 65-76.
- Deng; F, Liang, C., 2021. Revisiting the quantitative contribution of microbial
 necromass to soil carbon pool: Stoichiometric control by microbes and soil. Soil
 Biology and Biochemistry 164, 108486.
- Ding, X., Zhang, X., He, H., Xie, H., 2010. Dynamics of soil amino sugar pools
 during decomposition processes of corn residues as affected by inorganic N

addition. Journal of Soils and Sediments 10, 758–766.

- Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, M.,
- 725 Casanova-Katny, A., Muñoz, C., Boudin, M., Zagal Venegas, E., Boeckx, P.,
- 726 2015. Soil carbon storage controlled by interactions between geochemistry and
- climate. Nature Geoscience 8, 780-783.
- Donhauser, J., Qi, W., Bergk- Pinto, B., Frey, B., 2020. High temperatures enhance
 the microbial genetic potential to recycle C and N from necromass in highmountain soils. Global Change Biology 27, 1365-1386.
- 731 Dümig, A., Veste, M., Hagedorn, F., Fischer, T., Lange, P., Spröte, R.,
- Kögel-Knabner, I., 2014. Organic matter from biological soil crusts induces the
 initial formation of sandy temperate soils. Catena 122, 196–208.
- Duran P, de la Luz Mora M, Matus F, Barra PJ, Jofre I, Kuzyakov Y, Merino C 2021.
- Biological crusts to increase soil carbon sequestration: New challenges in a newenvironment. Biology 10, 1190.
- Fan, Y., Yang, L., Zhong, X., Yang, Z., Lin, Y., Guo, J., Chen, G., Yang, Y., 2020. N
 addition increased microbial residual carbon by altering soil P availability and
 microbial composition in a subtropical Castanopsis forest. Geoderma 375,
 114470.
- Fanin, N., Fromin, N., Buatois, B., Hättenschwiler, S., 2013. An experimental test of
 the hypothesis of non-homeostatic consumer stoichiometry in a plant
 litter-microbe system. Ecology Letters 16, 764–772.

744	Gao, L., Bowker, M.A., Xu, M., Sun, H., Tuo, D., Zhao, Y., 2017. Biological soil
745	crusts decrease erodibility by modifying inherent soil properties on the Loess
746	Plateau, China. Soil Biology and Biochemistry 105, 49-58.
747	Grote, E.E., Belnap, J., Housman, D.C., Sparks, J.P., 2010. Carbon exchange in
748	biological soil crust communities under differential temperatures and soil water
749	contents: Implications for global change. Global Change Biology 16, 2763-2774.
750	Gunina, A., Kuzyakov, Y., 2014. Pathways of litter C by formation of aggregates and
751	SOM density fractions: Implications from ¹³ C natural abundance. Soil Biology
752	and Biochemistry 71, 95-104.
753	Guhra, T., Stolze, K., Totsche, K.U., 2021. Pathways of biogenically excreted organic
754	matter into soil aggregates, Soil Biology and Biochemistry 108483.
755	Https://doi.org/10.1016/j.soilbio.2021.108483.
756	Hamel, C., Hanson, K., Selles, F., Cruz, A.F., Lemke, R., McConkey, B., Zentner, R.,
757	2006. Seasonal and long-term resource-related variations in soil microbial
758	communities in wheat-based rotations of the Canadian prairie. Soil Biology and
759	Biochemistry 38, 2104–2116.

- Hu, Y., Zheng, Q., Noll, L., Zhang, S., Wanek, W., 2020. Direct measurement of the
 in situ decomposition of microbial-derived soil organic matter. Soil Biology and
 Biochemistry 141, 107660.
- Hu, Y., Zheng, Q., Wanek, W., 2017. Flux analysis of free amino sugars and amino
 acids in soils by isotope tracing with a novel liquid chromatography/high

765 1	resolution mass s	pectrometry	platform. Analy	vtical Chemistr	v 89.	,9192–9200.
-------	-------------------	-------------	-----------------	-----------------	-------	-------------

- Huang, Y., Liang, C., Duan, X., Chen, H., Li, D., 2019. Variation of microbial residue
- contribution to soil organic carbon sequestration following land use change in asubtropical karst region. Geoderma 353, 340-346.
- Joergensen, R.G., 2018. Amino sugars as specific indices for fungal and bacterial
 residues in soil. Biology and Fertility of Soils 54, 559-568.
- Johnson, S.L., Kuske, C.R., Carney, T.D., Housman, D.C., Gallegos-Graves, L.V.,
- Belnap, J., 2012. Increased temperature and altered summer precipitation have
 differential effects on biological soil crusts in a dryland ecosystem. Global
 Change Biology 18, 2583-2593.
- Kaiser, C., Franklin, O., Dieckmann, U., Richter, A., 2014. Microbial community
 dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters
 17, 680–690.
- Khan, K.S., Mack, R., Castillo, X., Kaiser, M., Joergensen, R.G., 2016. Microbial
 biomass, fungal and bacterial residues, and their relationships to the soil organic
 matter C/N/P/S ratios. Geoderma 271, 115–123.
- 781 Koester M, Stock S, Nájera F, Abdallah K, Gorbushina A, Prietzel J, Matus F,
- 782 Klysubun W, Boy J, Kuzyakov Y, Dippold M, Spielvogel S 2021. From rock
- eating to vegetarian ecosystems disentangling processes of phosphorus
 acquisition across biomes. Geoderma 388, 114827.
- 785 Kravchenko, A.N., Guber, A.K., Razavi, B.S., Koestel, J., Quigley, M.Y., Robertson,

		_n	\mathbf{r}	
			ιU	

786	G.P., Kuzyakov, Y., 2019. Microbial spatial footprint as a driver of soil carbon
787	stabilization. Nature Communications 10, 3121.
788	Krause, L., Biesgen, D., Treder, A., Schweizer, S.A., Klumpp, E., Knief, C., Siebers,
789	N., 2019. Initial microaggregate formation: Association of microorganisms to
790	montmorillonite-goethite aggregates under wetting and drying cycles. Geoderma
791	351, 250–260.
792	Kuzyakov, Y., Mason-Jones, K., 2018. Viruses in soil: Nano-scale undead drivers of
793	microbial life, biogeochemical turnover and ecosystem functions. Soil Biology
794	and Biochemistry 127, 305-317.
795	Kubiak-Ossowska, K., Tokarczyk, K., Jachimska, B., Mulheran, P.A., 2017. Bovine
795 796	Kubiak-Ossowska, K., Tokarczyk, K., Jachimska, B., Mulheran, P.A., 2017. Bovine Serum Albumin Adsorption at a Silica Surface Explored by Simulation and

- Lavallee, J.M., Soong, J.L., Cotrufo, M.F., 2019. Conceptualizing soil organic matter
 into particulate and mineral- associated forms to address global change in the 21
 st century. Global Change Biology 26, 261-273.
- Legendre, P., Legendre, L., 2012. Numerical Ecology Ch 6 Multidimensional
 qualitative data. Developments in Environmental Modelling 24, 337–424.
- Li, J., Cooper, J.M., Lin, Z., Li, Y., Yang, X., Zhao, B., 2015. Soil microbial
 community structure and function are significantly affected by long-term organic
 and mineral fertilization regimes in the North China Plain. Applied Soil Ecology
 96, 75–87.

807	Li, J.Y., Jin, X.Y., Zhang, X.C., Chen, L., Liu, J.L., Zhang, H.M., Zhang, X., Zhang,
808	Y.F., Zhao, J.H., Ma, Z.S., Jin, D., 2020. Comparative metagenomics of two
809	distinct biological soil crusts in the Tengger Desert, China. Soil Biology and
810	Biochemistry 140, 107637.
811	Li, L., Wilson, C.B., He, H., Zhang, X., Zhou, F., Schaeffer, S.M., 2019. Physical,
812	biochemical, and microbial controls on amino sugar accumulation in soils under
813	long-term cover cropping and no-tillage farming. Soil Biology and Biochemistry
814	135, 369-378.
815	Li, Y., Nie, C., Liu, Y., Du, W., He, P., 2019. Soil microbial community composition
816	closely associates with specific enzyme activities and soil carbon chemistry in a
817	long-term nitrogen fertilized grassland. Science of the Total Environment 654,
818	264-274.
819	Liang, C., Amelung, W., Lehmann, J., Kästner, M., 2019. Quantitative assessment of
820	microbial necromass contribution to soil organic matter. Global Change Biology
821	25, 3578-3590.
822	Liang, C., Kästner, M., Joergensen, R.G., 2020. Microbial necromass on the rise: The
823	growing focus on its role in soil organic matter development. Soil Biology and
824	Biochemistry 150, 108000.
825	Liang, C., 2020. Soil microbial carbon pump: Mechanism and appraisal. Soil Ecology
826	Letters 2, 241–254.
827	Liang, C., Schimel, J.P., Jastrow, J.D., 2017. The importance of anabolism in

828	microbial control over soil carbon storage. Nature Microbiology 2, 17105.
829	Liu, Y., Zhao, L., Wang, Z., Liu, L., Zhang, P., Sun, J., Wang, B., Song, G., Li, X.,
830	2018. Changes in functional gene structure and metabolic potential of the
831	microbial community in biological soil crusts along a revegetation
832	chronosequence in the Tengger Desert. Soil Biology and Biochemistry 126, 40-
833	48.
834	Liu, Z., Sun, Y., Zhang, Y., Feng, W., Lai, Z., Fa, K., Qin, S., 2018. Metagenomic
835	and13C tracing evidence for autotrophic atmospheric carbon absorption in a
836	semiarid desert. Soil Biology and Biochemistry 125, 156–166.
837	López-Mondéjar, R., Brabcová, V., Štursová, M., Davidová, A., Jansa, J., Cajthaml,
838	T., Baldrian, P., 2018. Decomposer food web in a deciduous forest shows high
839	share of generalist microorganisms and importance of microbial biomass
840	recycling. ISME Journal 12, 1768-1778.
841	López-Mondéjar, R., Tláskal, V., Větrovský, T., Štursová, M., Toscan, R., Nunes, U.,
842	Baldrian, P., 2020. Metagenomics and stable isotope probing reveal the
843	complementary contribution of fungal and bacterial communities in the recycling
844	of dead biomass in forest soil. Soil Biology and Biochemistry 148, 107875.
845	Makino, W., Cotner, J.B., Sterner, R.W., Elser, J.J., 2003. Are bacteria more like
846	plants or animals? Growth rate and resource dependence of bacterial C:N:P
847	stoichiometry. Functional Ecology 17, 121-130.
~ • •	

848 Manzoni, S., Schimel, J.P., Porporato, A., 2012. Responses of soil microbial

849	communities to water stress: Results from a meta-analysis. Ecology 93, 930–938.
850	Matus, FJ 2021. Fine silt and clay content is the main factor defining maximal C and
851	N accumulations in soils: a meta-analysis. Scientific Reports 11, 6438.
852	Miltner, A., Bombach, P., Schmidt-Brücken, B., Kästner, M., 2012. SOM genesis:
853	Microbial biomass as a significant source. Biogeochemistry 111, 41–55.
854	Moorhead, D.L., Sinsabaugh, R.L., Hill, B.H., Weintraub, M.N., 2016. Vector
855	analysis of ecoenzyme activities reveal constraints on coupled C, N and P
856	dynamics. Soil Biology and Biochemistry 93, 1-7.
857	Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S., Richter, A., 2014.
858	Stoichiometric imbalances between terrestrial decomposer communities and their
859	resources: Mechanisms and implications of microbial adaptations to their
860	resources. Frontiers in Microbiology 5, 22.
861	Persson, J., Fink, P., Goto, A., Hood, J.M., Jonas, J., Kato, S., 2010. To be or not to
862	be what you eat: Regulation of stoichiometric homeostasis among autotrophs and
863	heterotrophs. Oikos 119, 741–751.
864	Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M.F., Derrien,
865	D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M., Gunina, A.,
866	Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L.M., Soong, J., Trigalet, S.,
867	Vermeire, M.L., Rovira, P., van Wesemael, B., Wiesmeier, M., Yeasmin, S.,
868	Yevdokimov, I., Nieder, R., 2018. Isolating organic carbon fractions with
869	varying turnover rates in temperate agricultural soils – A comprehensive method

- comparison. Soil Biology and Biochemistry 125, 10-26.
- Pointing, S.B., Belnap, J., 2012. Microbial colonization and controls in dryland
 systems. Nature Reviews Microbiology 10, 654.
- 873 Possinger, A.R., Zachman, M.J., Enders, A., Levin, B.D.A., Muller, D.A., Kourkoutis,
- L.F., Lehmann, J., 2020. Organo–organic and organo–mineral interfaces in soil
 at the nanometer scale. Nature Communications 11, 6103.
- 876 Prommer, J., Walker, T.W.N., Wanek, W., Braun, J., Zezula, D., Hu, Y., Hofhansl, F.,
- 877 Richter, A., 2019. Increased microbial growth, biomass, and turnover drive soil
- 878 organic carbon accumulation at higher plant diversity. Global Change Biology879 26, 669-681.
- 880 Rodriguez-Caballero, E., Belnap, J., Büdel, B., Crutzen, P.J., Andreae, M.O., Pöschl,

U., Weber, B., 2018. Dryland photoautotrophic soil surface communities

endangered by global change. Nature Geoscience 11, 185–189.

881

- 883 Samson, M.-élise, Chantigny, M.H., Vanasse, A., Menasseri-aubry, S., Royer, I.,
- Angers, D.A., 2020. Management practices differently affect particulate and mineral-associated organic matter and their precursors in arable soils. Soil Biology and Biochemistry 148, 107867.
- 887 Samson, M.É., Chantigny, M.H., Vanasse, A., Menasseri-Aubry, S., Angers, D.A.,
- 2020. Coarse mineral-associated organic matter is a pivotal fraction for SOM
 formation and is sensitive to the quality of organic inputs. Soil Biology and
 Biochemistry 149, 107935.

891	Schweigert, M., Herrmann, S., Miltner, A., Fester, T., Kästner, M., 2015. Fate of
892	ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution
893	to soil organic matter formation. Soil Biology and Biochemistry 88, 120-127.
894	Shahbaz, M., Kuzyakov, Y., Sanaullah, M., Heitkamp, F., Zelenev, V., Kumar, A.,
895	Blagodatskaya, E., 2017. Microbial decomposition of soil organic matter is
896	mediated by quality and quantity of crop residues: mechanisms and thresholds.
897	Biology and Fertility of Soils 53, 287-301.
898	Shao, P., Lynch, L., Xie, H., Bao, X., Liang, C., 2021. Tradeoffs among microbial life
899	history strategies influence the fate of microbial residues in subtropical forest
900	soils. Soil Biology and Biochemistry 153, 108112.
901	Sokol, N.W., Bradford, M.A., 2018. Microbial formation of stable soil carbon is more
902	efficient from belowground than aboveground input. Nature Geoscience 12,
903	46-53.
904	Sokol, N.W., Kuebbing, S.E., Karlsen-Ayala, E., Bradford, M.A., 2019. Evidence for
905	the primacy of living root inputs, not root or shoot litter, in forming soil organic
906	carbon. New Phytologist 221, 233-246.
907	Steven, B., Gallegos-Graves, L.V., Yeager, C.M., Belnap, J., Evans, R.D., Kuske,
908	C.R., 2012. Dryland biological soil crust cyanobacteria show unexpected
909	decreases in abundance under long-term elevated CO ₂ . Environmental
910	Microbiology 14, 3247-3258.
911	Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for

912	measuring soil microbial biomass C. Soil Biology and Biochemistry 19, 703-
913	707.

- Wang B; An SS; Chao L; Liu Y; Kuzyakov Y 2021a. Microbial necromass as a
 source of organic carbon in global ecosystems. Soil Biology and Biochemistry
 162, 108422.
- Wang, B., Liang, C., Yao, H., Yang, E., An, S., 2021b. The accumulation of microbial
 necromass carbon from litter to mineral soil and its contribution to soil organic
 carbon sequestration. Catena 207, 105622.
- Walker, T.S., Bais, H.P., Grotewold, E., Vivanco, J.M., 2003. Update on Root
 Exudation and Rhizosphere Biology Root Exudation and Rhizosphere Biology 1
- 922 132, 44–51.
- Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for
 determining soil organic matter, and proposed modification of the chromic acid
 titration method. Soil Science 37, 29–38.
- Warren, C., 2021. What are the products of enzymatic cleavage of organic N? Soil
 Biology and Biochemistry 154, 108152.
- Wu, J., Joergensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., 1990.
- Measurement of soil microbial biomass C by fumigation-extraction-an
 automated procedure. Soil Biology and Biochemistry 22, 1167–1169.
- 331 Xia, Y., Chen, X., Zheng, X., Deng, S., Hu, Y., Zheng, S., He, X., Wu, J., kuzyakov,
- 932 Y., Su, Y., 2020. Preferential uptake of hydrophilic and hydrophobic compounds

933	by bacteria and fungi in upland and paddy soils. Soil Biology and Biochemistry
934	148, 107879.

- Xu, H., Zhang, Y., Shao, X., Liu, N., 2022. Soil nitrogen and climate drive the
 positive effect of biological soil crusts on soil organic carbon sequestration in
 drylands: A Meta-analysis. Science of the Total Environment 803, 150030.
- Yang, J.Q., Zhang, X., Bourg, I.C., Stone, H.A., 2021. 4D imaging reveals
 mechanisms of clay-carbon protection and release. Nature Communications 12,
 622.
- Yao, X., Bowker, M.A., Xiao, B., 2020. Estimation of annual CO₂ efflux of moss
 biocrust through measuring and simulating its respiration rate in a semiarid
 climate. Geoderma 376, 114560.
- 944 Ye, G., Lin, Y., Kuzyakov, Y., Liu, D., Luo, J., Lindsey, S., Wang, W., Fan, J., Ding,
- W., 2019. Manure over crop residues increases soil organic matter but decreases
 microbial necromass relative contribution in upland Ultisols: Results of a 27-year
 field experiment. Soil Biology and Biochemistry 134, 15-24.
- Zechmeister-Boltenstern, S., Keiblinger, K.M., Mooshammer, M., Peñuelas, J.,
 Richter, A., Sardans, J., Wanek, W., 2015. The application of ecological
 stoichiometry to plant-microbial-soil organic matter transformations. Ecological
 Monographs 85, 133-155.
- Zhang, X., Amelung, W., 1996. Gas chromatograph1c determination of muramic acid,
 glucosamine, mannosamine, and galactosamine in soils. Soil Biology and

Biochemistry 28, 1201–1206.

- 255 Zhang, X., Jia, J., Chen, L., Chu, H., He, J.S., Zhang, Y., Feng, X., 2021. Aridity and
- 956 NPP constrain contribution of microbial necromass to soil organic carbon in the
- 957 Qinghai-Tibet alpine grasslands. Soil Biology and Biochemistry 156, 108213.

Journal Providence

958 **Figure legends**:

Fig. 1. Dynamics of fungal necromass carbon (C) and bacterial necromass C, 959 fungal:bacterial necromass ratio, microbial necromass C contribution to soil organic C, 960 fungal and bacterial necromass C contribution to soil organic C, fungal necromass to 961 total microbial necromass C ratio, necromass accumulation coefficient (microbial 962 necromass C/living microbial biomass C: necromass accumulation per unit of 963 microbial biomass C) in biological soil crusts (BSC) horizon and in the 0-2 cm of 964 BSC-underlying mineral soil during 5 stages of BSC formation: bare sand (~ 0-1 965 years old), cyanobacteria stage (Cy, $\sim 3-7$ years old), cyanobacteria-moss stage 966 (Cy-Mo, ~ 8–13 years old), moss-cyanobacteria stage (Mo-Cy, ~ 20–25 years old), 967 and moss stage (Mo, ~ 30 years old). Total microbial necromass C was estimated as 968 the sum of fungal and bacterial necromass C. Values are presented as the means of 5 969 replicates \pm standard error (SE). Lowercase and uppercase letters indicate significant 970 differences between the biological soil crust stages (p < 0.05). SOC, soil organic 971 972 carbon; MNC, microbial necromass carbon.

973

Fig. 2. Activities of β-1,4-glucosidase (BG), β-1,4-N-acetyl-glucosaminidase (NAG), leucine aminopeptidase (LAP) and alkaline phosphatase (AP), C- and N- acquiring enzyme activity/microbial biomass C (MBC)- and N (MBN)- ratio (specific enzyme activity per microbial biomass unit: microbial enzyme activity coefficient) in the biological soil crust (BSC) horizon and in the 0–2 cm of BSC-underlying mineral soil during 5 stages of BSC formation: bare sand, cyanobacteria stage (Cy),

stage (Mo). Values are presented as the means of 5 replicates \pm standard error (SE). Letters indicate significant differences between the biological soil crust stages (p < 0.05).

984

980

Fig. 3. Top: Vector length and angle of enzymatic stoichiometry in the BSC horizon 985 and 0-2 cm soil reflecting the microbial C and N limitations during biocrust 986 formation (5 stages): bare sand, cyanobacteria stage (Cy), cyanobacteria-moss stage 987 988 (Cy-Mo), moss-cyanobacteria stage (Mo-Cy), and moss stage (Mo). Values are the means of 5 replicates ± standard error (SE). Lowercase and uppercase letters indicate 989 significant differences in BSC and 0-2 cm between the biological soil crust stages, 990 991 respectively. A vector angle of $< 45^{\circ}$ denotes N limitation (red horizontal dashed line), and angles > 45° denote P limitation. **Bottom:** Stoichiometric analysis of soil enzyme 992 activities to identify the C, N and P limitations in soil. By using 1.0 as a horizontal 993 and vertical baseline along the axes of enzyme activity ratios (NAG+LAP/AP as 994 x-axis and BG/NAG+LAP as y-axis), four groups of microbial resource limitations 995 were categorized: N limitation, P limitation, C and N colimitation, and C and P 996 colimitation. Nearly all stages (except Bare sand) and replicates are clearly N limited 997 (light yellow shaded area). 998

999

Fig. 4. Regressions of soil organic C with particulate and mineral-associated organic
C (POC and MAOC); soil organic C (SOC) a fungal, bacterial and microbial

1002 necromass C; mineral-associated organic C with fungal, bacterial and microbial 1003 necromass C; and particulate organic C with fungal, bacterial and microbial 1004 necromass C. All regression lines are significant at p < 0.001. BNC, bacterial 1005 necromass C; FNC, fungal necromass C; MNC, total microbial necromass C. The 1006 black dashed line indicates a 1:1 relationship.

1007

Fig. 5. Regressions of microbial necromass C with particulate (POC) and mineral-associated organic C (MAOC), soil organic C (SOC) with the POC/MAOC ratio, and soil clay and silt content with bacterial and fungal necromass C. All regression lines are significant at p < 0.05. The black dashed line indicates a 1:1 relationship.

1013

1014

Fig. 6. Redundancy analysis (RDA) identifies the relationships between microbial 1015 biomass, extracellular enzyme activities, available nutrients, particulate organic C, 1016 mineral-associated organic C, clay content, and microbial necromass C. The red 1017 arrows indicate explanatory variables, and the black arrows indicate response 1018 variables. The points represent the stages of biocrust formation. The explanatory ratio 1019 we use in this study is the simple effect. The light red bars represent microbial 1020 biomass C, N, P content, the light green bars represent the four extracellular enzyme 1021 activities and the light blue bars represent other soil properties. BNC, bacterial 1022 necromass C; FNC, fungal necromass C; MNC, total microbial necromass C; GlcN, 1023

1024	glucosamine; GalN, galactosamine; ManN, mannosamine; MurA, muramic acid; F/B
1025	necromass, fungal/bacterial necromass; DC, dissolved carbon; DN, dissolved nitrogen;
1026	DP, dissolved phosphorus; MBC, microbial biomass carbon; MBN, microbial biomass
1027	nitrogen; MBP, microbial biomass phosphorus; BG, β -1,4-glucosidase; NAG,
1028	β -1,4-N-acetyl-glucosaminidase; LAP, leucine aminopeptidase; AP, alkaline
1029	phosphatase; POC, particulate organic carbon; MAOC, mineral-associated organic
1030	carbon. * $p < 0.05$, ** $p < 0.01$.

1031

1032 Fig. 7. Conceptual framework for the preservation, decomposition and stabilization of microbial necromass in biological crust dominated sandy soils. Microbial N demand 1033 (X axis) and clay conservation (Y axis) regulate microbial necromass decomposition 1034 and accumulation, further determining particulate organic carbon (POC) and 1035 mineral-associated organic carbon (MAOC) pool formation. Saturation of MAOC 1036 accumulation due to low clay content led to more microbial necromass being 1037 incorporated into the POC pool. However, the increase of soil clay content by 1038 weathering eliminates MAOC saturation during pedogenesis. MAOC did not always 1039 1040 increase after saturation, but POC increased with the microbial necromass, suggesting that the limitation of MAOC increase by low clay content contributed more to POC 1041 than MAOC accumulation. The curved dotted arrow shows the accelerated POC 1042 compared to MAOC accumulation after the MAOC saturation. The N limitation of 1043 microorganisms and limited clay protection and MAOC saturation resulted in a lower 1044 necromass accumulation coefficient, which led to a much lower contribution of 1045

1046 microbial necromass to SOC in the initial formation of biocrust-covered sandy soil.

ournal Pre-proof

1047	Table 1 The content of carbon (C), nitrogen (N), and phosphorus (P) contents in the bulk soil, microbial biomass and dissolved matter, amino
1048	sugar (glucosamine (GlcN), galactosamine (GalN), mannosamine (ManN) and muramic acid (MurA)), particulate organic carbon (POC) and
1049	mineral-associated organic carbon (MAOC) and the mass ratio of POC to MAOC, and soil clay (%), silt (%) and sand (%) contents in biological
1050	soil crusts (BSC) horizon and in the 0-2 cm of BSC-underlying mineral soil during 5 stages of BSC formation: bare sand (~ 0-1 years old),
1051	cyanobacteria stage (Cy, ~ 3–7 years old), cyanobacteria-moss stage (Cy-Mo, ~ 8–13 years old), moss-cyanobacteria stage (Mo-Cy, ~ 20–25
1052	years old), and moss stage (Mo, \sim 30 years old). Values are the means of 5 replicates ± standard error (SE). Lowercase and uppercase letters

indicate significant differences in BSC and the 0-2 cm soil horizons between the biological soil crust stages, respectively (p < 0.05).

	Bare sand	Cyanob	acteria	Cyanobac	teria-moss	Moss-cyan	obacteria	Мо	ss
	0-2 cm	BSC	0-2 cm	BSC	0-2cm	BSC	0-2cm	BSC	0-2cm
SOC (g kg ⁻¹)	2.44±0.29B	15.2±3.08b	6.73±1.97A	17.8±3.20ab	5.45±1.24A	20.0±3.00a	6.00±2.00A	19.8±4.00a	6.14±2.76A
TN (g kg ⁻¹)	0.10±0.01B	1.10±0.27b	0.46±0.14A	1.14±0.26b	0.42±0.11A	1.38±0.16a	0.49±0.14A	1.30±0.26ab	0.46±0.19A
TP (g kg ⁻¹)	0.19±0.02B	0.40±0.02b	0.32±0.03A	0.40±0.04ab	0.32±0.04A	0.45±0.06a	0.34±0.05A	0.39±0.03ab	0.31±0.03A
MBC (mg kg ⁻¹)	12.3±6.44C	812±204b	143±60AB	957±233b	86±34B	2199±235a	177±54A	2174±475a	140±84AB
MBN (mg kg ⁻¹⁾	6.25±2.82C	259±44b	59±27AB	273±25b	52±18B	399±13a	79±18A	458±27a	71±26AB
MBP (mg kg ⁻¹⁾	4.57±2.25A	8.21±4.56b	3.83±2.02A	15.8±6.95b	4.78±2.59A	38.6±15.2a	5.13±2.56A	35.8±11.1a	5.72±3.83A
DC (mg kg ⁻¹)	9.18±1.01C	72.2±14.0b	46.4±24.0AB	79.3±16.8b	29.5±8.81B	128±42.9a	45.7±15.3A	139±51.0a	33.1±9.10AB
DN (mg kg ⁻¹⁾	8.84±2.99C	92.6±22.5a	25.5±7.26AB	115±27.1a	21.7±6.84B	108±12.0a	24.0±6.77AB	115±47.0a	30.6±12.9A
DP (mg kg ⁻¹⁾	9.24±4.3A	4.82±1.11b	6.10±1.33B	7.34±5.42b	6.66±4.23AB	11.9±1.26a	7.69±2.07AB	14.0±2.43a	9.38±1.27A
GlcN (mg kg ⁻¹)	29.6±3.23B	329±94a	159±31A	310±49a	127±28A	369±91a	151±57A	323±137a	147±96A

ManN (mg kg ⁻¹⁾	1.11±0.21B	12.6±4.61a	5.97±1.89A	13.8±2.73a	4.38±0.90A	13.85±3.89a	4.38±1.45A	10.2±1.78a	4.92±2.09A
GalN (mg kg ⁻¹⁾	12.1±2.19A	148±38a	85±8.8.78A	130±27a	71±18A	141±32a	66±24A	121±31a	61±31A
MurA (mg kg ⁻¹⁾	1.42±0.26C	26.6±9.77a	7.11±1.26A	27.9±7.62a	5.54±0.99B	30.4±4.28a	$5.47{\pm}0.98B$	24.4±5.40a	4.55±2.16B
POC (g kg ⁻¹)	0.63±0.15C	6.31±2.42b	3.16±0.88A	3.55±1.05b	1.68±0.41B	6.39±2.70b	1.41±0.57BC	9.47±3.21a	2.60±1.18A
MAOC (g kg ⁻¹)	1.67±0.34B	7.39±1.56b	3.17±0.63A	527±0.72c	2.44±0.49A	7.22±1.33b	2.65±0.46A	12.57±2.68a	2.90±1.15A
POC Mass ratio	92.3%±0.60%A	68.9%±6.15%a	$63.0\% \pm 5.90\% B$	62.6%±4.34%a	62.6%±4.34%B	65.8%±1.21%a	$62.6\% \pm 2.05\% B$	61.3%±3.53%a	$69.1\% \pm 5.50\% B$
MAOC Mass ratio	$7.72\% \pm 0.60\% B$	31.1%±6.15a	$37.0\% \pm 5.90\% A$	37.4%±4.34%a	37.4%±4.34%A	34.2%±1.21%a	37.4%±2.05%A	38.7%±3.54%a	30.9%±5.50%A
Clay (%)	$0.21\% \pm 0.08\%$	$1.89\% \pm 0.45\%$	$1.58\% \pm 0.67\%$	1.56%±0.35%	$1.56\% \pm 0.66\%$	1.40%±0.46%	$1.28\% \pm 0.43\%$	$1.24\% \pm 0.45\%$	1.27%±0.56%
Silt (%)	$6.84\%{\pm}1.15\%$	47.4%±11.3%	$37.3\%{\pm}10.2\%$	41.1%±2.35%	38.1%±12.2%	38.3%±9.42%	37.5%±8.88%	33.9%±10.3%	$31.5\%{\pm}13.5\%$
Sand (%)	92.9%±1.20%	50.8%±11.7%	61.1%±10.8%	57.5%±2.72%	60.3%±9.87%	60.3%±9.87%	61.2%±9.14%	64.8%±10.8%	67.2%±14.1%

1.1%±10.8% 57.5%±2.72% 60.3%±9.87% 60

1054 Supplementary Figures

1055	Fig. S1. Relationships between fungal, bacterial,	and microbial necromass and C, N,
1056	and P in microbial biomass and dissolved C, N an	d P and enzyme activities. Only the
1057	regression lines significant at $p < 0.05$ are prese	nted. BG, β -1,4-glucosidase; NAG,
1058	β -1,4-N-acetyl-glucosaminidase; LAP, leucine	aminopeptidase; AP, alkaline
1059	phosphatase. BNC, bacterial necromass C; FNC	, fungal necromass C; MNC, total
1060	microbial necromass C.	

1061

Fig. S2. Relationships between the log of microbial biomass carbon/nitrogen (C/N) 1062 ratio and log of ratio of the C/N in bulk soil, dissolved matter and enzymes. Only the 1063 regression lines significant at p < 0.05 are presented. The coefficient 1/H is the slope 1064 of the regression between log (resource ratio, C/N in bulk soil, dissolved matter and 1065 enzyme) and log (biomass ratio, microbial biomass C/N), which represent the degree 1066 of microbial stoichiometric homeostasis. The regression relationship was 1067 nonsignificant (p > 0.05), 1/H was set to zero, and the microorganisms were 1068 considered "strictly homeostatic". Microorganisms maintain constant biomass C/N 1069 ratios regardless of the changes in C/N in bulk soil, dissolved matter and enzymes. 1070

1071

Fig. S3. Relationships of the log of fungal and bacterial necromass C, log of microbial
biomass C/N and soil dissolved organic C/N. FNC, fungal necromass C; BNC,
bacterial necromass C; MNC, microbial necromass C.

ournal Prort

ournal Pre-Y

Highlights:

- Microbial necromass C contribution to SOC in biocrust-covered sandy soils was less than 25%
- Biocrust-covered sandy soils have a low necromass accumulation coefficient
- Low soil clay content leads to more microbial necromass forming particulate organic carbon
- Microbial nitrogen limitation was common in biocrust formation sequences
- Microbial N limitation and insufficient clay protection control the necromass dynamics

ournal

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

