Effect of shrub-grass vegetation coverage and slope gradient on runoff and sediment yield under simulated rainfall

Dandan Han, Jingcheng Deng, Chaojun Gu, Xingmin Mu, Peng Gao, Jianjian Gao

PII: S1001-6279(20)30055-X
DOI: https://doi.org/10.1016/j.ijsrc.2020.05.004
Reference: IJSRC 305

To appear in: International Journal of Sediment Research

Received Date: 13 August 2019
Revised Date: 19 May 2020
Accepted Date: 25 May 2020

Please cite this article as: Han D., Deng J., Gu C., Mu X., Gao P. & Gao J., Effect of shrub-grass vegetation coverage and slope gradient on runoff and sediment yield under simulated rainfall, International Journal of Sediment Research, https://doi.org/10.1016/j.ijsrc.2020.05.004.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V. on behalf of International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research.
Title: Effect of shrub-Grass vegetation coverage and slope gradient on runoff and sediment yield under simulated rainfall

Article Type: Original Research

Dandan Hana,c, Jingcheng Dengb, Chaojun Gud, Xingmin Mua,b, Peng Gaoa,b,*, Jianjian Gaoe

a State Key Laboratory of Soil Erosion and Dryland Agriculture on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, Shaanxi, China

b State Key Laboratory of Soil Erosion and Dryland Agriculture on Loess Plateau, Northwest A&F University, 712100, Yangling, Shaanxi, China

c University of Chinese Academy of Sciences, 100000, Beijing, China

d Yangtze River Basin Monitoring Center Station for Soil and Water Conservation, Changjiang Water Resources Commission, Wuhan, Hubei, 430012, China

e Suide Test Station of Water and Soil Conservation, Yellow River Conservancy Committee of the Ministry of Water Resources, 719000, Yulin, Shaanxi, China

Corresponding author:

*Peng Gao, State Key Laboratory of Soil Erosion and Dryland Agriculture on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources.

E-mail: gaopeng@ms.iswc.ac.cn
Effect of shrub-grass vegetation coverage and slope gradient on runoff and sediment yield under simulated rainfall

Abstract

Evaluating the benefits of sediment and runoff reduction in different vegetation types is essential for studying the mechanisms of soil and water conservation on the Loess Plateau. The experiment was conducted in shrub-grass plots with nine levels of mixed vegetation coverage from 0% to 70%, three slopes (10°, 15°, and 20°) and two rainfall intensities (1.0 and 2.5 mm/min). The results showed that the vegetation coverage and slope gradient significantly affect runoff and sediment yield. Shrub-grass vegetation coverage had a significant effect on the runoff start-time, runoff flow velocity, runoff rate, and soil erosion rate on hillslopes. Mixed vegetation coverage could effectively delay the runoff start-time and decrease the runoff flow velocity. However, the effects of the slope gradient on runoff and sediment yield are opposite to those of vegetation coverage. Shrub-grass vegetation coverage could effectively increase runoff and sediment yield reduction benefits, while their benefits were affected by the rainfall intensity. At the 1.0 mm/min rainfall intensity, the reduction in the sediment production rate was greater than that under the 2.5 mm/min intensity. However, when the shrub-grass vegetation coverage exceeded 42%, the runoff reduction benefit was more obvious at higher rainfall intensities. The cumulative sediment yield increased with increasing cumulative runoff, and the rate of increase in the cumulative runoff
was greater than that of the cumulative sediment yield with increasing of shrub-grass vegetation coverage. Moreover, there was a power function relationship between cumulative sediment yield and cumulative runoff yield ($P<0.05$). Our paper is expected to provide a good reference on the ecological environment and vegetation construction on the Loess Plateau.

Keywords: Simulated rainfall; Shrub-grass coverage; Slope; Runoff and sediment yield

1. **Introduction**

Soil erosion is the most serious problem on the Loess Plateau in China. The sediment discharge of the middle reach of the Yellow River (flow through the Loess Plateau) was 16×10^8 t (Li, 1983) between 1960 and 1980, reflecting the severity of the soil erosion in the region. To protect the ecological environment, the Chinese government implemented a series of ecological projects. The most representative example is the Grain for Green Project. The "Grain for Green Project" aims to promote the transformation of barren cropland on the Loess Plateau into forestland or grassland and was launched in 1999 (Zhang et al., 2017). With the help of vegetation construction and the implementation of soil and water conservation, the annual sediment discharge of the middle reach of the Yellow River was reduced to 3×10^8 t after 2000 (Zhang, 2011). However, there are still some problems in the region.
example, water shortage is severe on the Loess Plateau, and trees are difficult to grow. “Old and dwarf trees” occur among mature trees rather than young trees. Therefore, the planting of grasses and shrubs was chosen as the main strategy to control soil erosion on the hillslopes of the Loess Plateau.

The vegetation coverage is a major factor in controlling soil and water loss (Wei et al., 2003; Yan et al. 2018). Many studies have investigated the benefits of vegetation construction on the Loess Plateau in reducing runoff generation and soil erosion (Li et al., 2009; Qian et al., 2014; Rustomji et al., 2008; Wainwright et al., 2000). The vegetation can increase soil organic matter and ameliorate soil physical properties, thereby reducing surface runoff and soil erosion and decreasing nutrient loss (An et al., 2013; Qian et al., 2014). Zhao et al. (2013b) showed that the effects of increasing vegetation cover on runoff and sediment reduction were most evident when vegetation cover was between 30% and 40%. Xiao et al. (2017) studied the relationship between the rate of soil erosion and runoff hydrodynamic characteristics during simulated rainfall, and concluded that the runoff and soil erosion rates in shrub plots were lower than those in plots with bare. Soil erosion could be controlled by enhancing soil land use, increasing ground cover and varying the soil type (Ding & Li, 2016; Nunes et al., 2011; Zheng et al., 2008). Li and Pan (2018) found that different vegetation components also influence overland flow and sediment, and that roots played a dominant role in reducing runoff and soil erosion, with a mean contribution of 84%. The runoff and sediment yield reduction benefits of vegetation coverage have
been demonstrated on hillslopes (Casermeiro et al., 2004; Zhao et al., 2013a), while there were many deficiencies in the recent studies. As mentioned above, previous studies have focused only on the coverage of a single vegetation type or a single impact factor, which differ from what occurs under natural conditions. Moreover, there has been no conclusion on critical vegetation coverage (Cao et al., 2017; Xiao et al., 2011a). Meng et al. (2018) showed that critical vegetation coverage was higher than 60% could effectively controlling erosion. Therefore, it is necessary to study the effects of vegetation coverage on runoff and sediment yield more deeply.

Runoff generation and erosion processes on hillslopes are closely related to the precipitation, vegetation cover and slope gradient, which could affect the accumulation of surface flow and sediment yield (CerdaÁ, 1998). Li et al. (2009) studied soil erosion from grass plots with scouring experiments, and concluded that sediment yield from grass plots decreased rapidly as the vegetation coverage increased from 0% to 90%. The components of the grass were different from those of the shrubs, so the grass and shrubs had their own mechanisms for reducing runoff and sediment generation. Xiao et al. (2011a) showed that the soil loss rates of grass plots were greater than those of shrub plots in laboratory experiments. Compared with those in other plain areas, the slopes are steeper on the Loess Plateau. Therefore, it is necessary to understand the effects of slope gradients on erosion control in this region. Numerous studies have revealed that the slope gradient has an impact on runoff and sediment production in rainfall simulation experiments (Calvo-Cases et al., 2003;
Daniels & Gilliam, 1996; Wei et al., 2014). El Kateb et al. (2013) found that runoff and soil loss was significantly affected by the slope gradient: the potential runoff and sediment yield increased with an increase in the slope gradient. Most of these studies involved a single vegetation type, e.g., shrub-coverage or grass-coverage, and mostly showed that runoff and soil erosion increased with shrub-coverage or grass-coverage. However, there is little information on the relationship between combined shrub and grass coverage and soil erosion.

Our study focused on the responses of runoff and sediment yield to differences in shrub- grass vegetation coverage (i.e., mixed vegetation coverage) and slope gradient under simulated rainfall conditions. This study also addressed the relationship between runoff/sediment and vegetation coverage, which will help us to evaluate soil and water conservation benefits and provide good reference for the ecological environment and vegetation construction in the Loess Plateau.

2. Materials and methods

2.1 Experimental setup

The experiments were conducted in the artificial rainfall hall of the Institute of Soil and Water Conservation (ISWC), Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China. A side-spraying simulated rainfall system with a rainfall height of 16 m above the soil surface was used in this study. The system can produce desired rainfall intensities ranging from 30 to 200 mm h\(^{-1}\) with a uniformity of more than 85% (Chen & Wang, 1991). In addition, the maximum continuous
rainfall time was 12 hours, and the effective rainfall area was 9 by 4 m.

The runoff plots constructed in this study were 5 m (length) × 1.0 m (width) × 0.6 m (depth). Each plot was composed of a pair of soil plots containing boxes adopting, variable slopes in the range of 0-20°. At the bottom of each plot, a triangle-shaped drainage outlet was placed for collecting surface runoff and sediment (Fig. 1). To maintain the same rainfall under each condition, the rainfall times were 120 min and 30 min for rainfall intensities of 1.0 mm min\(^{-1}\) and 2.5 mm min\(^{-1}\), respectively. In the semiarid region of the Loess Plateau, 60-80% of the annual precipitation falls from June to September, mostly in rainstorms of high intensity and short duration. The higher intensity of 2.5 mm min\(^{-1}\) was chosen to determine the effects of grass and shrub coverage on runoff and soil loss at high runoff and sediment yield, while the lower intensity was chosen to represent the effects of grass and shrub coverage on runoff and soil loss at a lower intensity of 1.0 mm min\(^{-1}\). The gradient of the test slope was 10°, 15°, and 20° based on the main range of slopes of 10° to 20° on the Loess Plateau.

2.2 Experimental soil and vegetation

The tested soil was collected from the Zhifanggou watershed (36°42′-36°46′N and 109°13′-109°16′E), Ansai County, Shaanxi Province, China. The district has an average annual temperature of 8.8°C and annual precipitation of 549 mm. The precipitation in the study area shows clear inter- and intra-annual changes, of with more than 70% of the rainfall falling from June to September. The predominant soil is
loessial soil. The soil material used in this study was sandy loam, and the percentages of sand (>0.05 mm), silt (0.05-0.002 mm) and clay (<0.002 mm) were 12.17%, 62.85%, and 24.97%, respectively. The test shrub was *Pittosporum tobira* (Garcia-Garcia et al., 2016), which is a dominant tree species that grown well in the sun and half shade. It has strong adaptability and can grow well in drought and cold conditions. The shrub reached a height of approximately 100 cm after one year of growth and was planted every 30 cm. The grass species chosen was *Ophiopogon japonicus* (He et al., 2012), which is convenient for planting indoors and grows normally in climatic conditions with abundant rainfall at 5-30℃. The grass reached a height of approximately 10 cm after one year of growth and was planted every 5 cm. The grass-shrub vegetation coverage ranged from 0 to 70%. A high-resolution digital camera was used to take photographs of the vegetation field, and then the shrub-grass coverage was calculated using ENVI software (Table 1). The percentage of grass-shrub coverage was calculated to represent the proportion of the soil surface in each plot covered by the vegetation canopy.

2.3 Experimental procedures

Before the soil plots were filled, the dry soil was filtered with a 10-mm sieve to remove vegetation roots and stones. The method of stratified-filling in the tank was adopted. First, a 5-cm thick layer of sand was placed at the bottom of each box to facilitate free drainage. Then, a layer of gauze was laid on the sand layer to allow the uniform infiltration of water. The remaining sand was packed and compacted at 5-cm
increments in the sieved soil, whose soil bulk density was required to be 1.35 g/cm3, and the surface was supposed to be flat and parallel to the bottom of the groove.

The initial soil moisture content at the depths of 10, 20, 30, and 40 cm in the soil trough was measured with a soil moisture sensor S-SMC-M005. To maintain the initial soil moisture content at a similar level, a pilot rainfall treatment was conducted to ensure that the soil moisture content fluctuated between 10 and 15%. The surface runoff and sediment produced were collected using plastic buckets every 1-min. The sediment was deposited, separated from the water, dried in a drying oven to a constant weight at 105°C, and then weighed. Surface flow velocities on the upper and lower slopes of the plots were measured every 5-min based on a dye tracer with a gap of 70 cm (Li & Pan, 2018). The earth trough was raised to the highest level after each rainfall event; therefore, the water in the soil can infiltrate into the bottom freely and can be immediately removed.

2.4 Data analysis

The surface runoff depth was calculated based on the volume of the contents in the buckets at 5-min collection-time intervals as follows:

$$RD_i = \frac{RM_i}{A}$$ \hspace{1cm} (1)

where RD_i is the runoff depth in sample i in each time interval (mm); RM_i is the runoff amount in sample i in each time interval (mm3); and A is the area of the soil trough in sample i in each time interval (mm2). The runoff and sediment production
rates were obtained according to the following two formulas:

\[RR_i = \frac{RD_i}{T} \] \hspace{1cm} (2)

\[SR_i = \frac{RY_i}{T} \] \hspace{1cm} (3)

where \(RR_i \) is the runoff rate in sample \(i \) in each time interval (mm min\(^{-1}\)); \(SR_i \) is the sediment yield in sample \(i \) in each time interval (g/min); \(RY_i \) is the sediment production rate in sample \(i \) in each time interval (g); and \(T \) is the time at 1- min (min).

The runoff velocity flow was calculated according to the following formula:

\[RVF_i = \frac{0.7}{T_i} \] \hspace{1cm} (4)

where \(RVF_i \) is the runoff velocity flow in sample \(i \) in each time interval (m/s); and \(T_i \) is the runoff time from 0.7 m to the bottom of the trough (s). Statistical analysis was conducted using SPSS 13.0.

3 Results

3.1 Runoff start-time and runoff flow velocity

The runoff start-time and runoff flow velocity are two major parameters of slope runoff. For the same slope gradient, the runoff start-time was delayed and the runoff flow velocity decreased with an increase in shrub-grass vegetation coverage. Taking a rainfall intensity of 1.0 mm/min and slope gradient of 15° as an example, the runoff start-time for grass coverage of 0, 18, 26, 35, 42, 43, 60, 66, and 70% was 82, 91, 93, 115, 121, 135, 181, and 205, respectively. At the 1.0 mm/min rainfall intensity, as the
vegetation coverage exceeded 42%, the runoff flow velocity showed a significant
decreasing trend. However, the runoff flow velocity decreased rapidly at the
beginning and then tended to stabilize when it reached a peak at a vegetation coverage
of 43%. The runoff flow velocity ranged from 0.15 to 0.3 m/s, with an average of 0.25
m/s at the 1.0 mm/min rainfall intensity, and the runoff flow velocity ranged from 0.1
to 0.3 m/s at the 2.5 mm/min rainfall intensity with a mean of 0.24 m/s.

The runoff start-time and the runoff flow velocity were both influenced by the
rainfall intensity. The runoff start-time showed a strong increasing trend, with a
growth rate of 1.68 s at 1.0 mm/min rainfall intensity and 0.77 s at 2.5 mm/min
rainfall intensity (Fig. 2a). Moreover, the increase in the runoff start-time with
coverage change at the rainfall intensity of 1.0 mm/min was 2.18 times that of the 2.5
mm/min rainfall intensity. The variation in runoff flow velocity showed strong
decreasing trends, with a rate of decline of 0.00182 m/s at 1.0 mm/min rainfall
intensity and 0.00154 m/s at 2.5 mm/min rainfall intensity (Fig. 2b). The findings
indicate that the effects of vegetation coverage on the runoff start-time and runoff
flow velocity affected by rainfall intensity. In addition, the slope gradient was also an
important factor affecting the runoff start-time and the runoff flow velocity. With an
increase in slope, the runoff start-time was significantly shorten. When the slope
gradient was 10°, the average runoff start-time was 132 s at 1.0 mm/min rainfall
intensity and 61 s at 2.5 mm/min rainfall intensity. When the slope increased to 15°,
the runoff start-time was shortened by 17 s and 38 s, respectively. Moreover, the
runoff start-time at 20° was shortened by 4 s and 12 s, respectively. Furthermore, the flow velocity increased with an increase in slope gradient, and the mean runoff flow velocity was 0.149-0.213, 0.157-0.217, and 0.167-0.236 m/s, respectively, corresponding to the slopes of 10, 15, and 20.

The runoff start-time showed a significantly positive correlation with grass vegetation coverage and a negative correlation with the slope according to the regression relation (Table 2). This means that the start time of runoff decreased as the slope increased and increased with increasing vegetation coverage. Moreover, the standard coefficients of vegetation coverage and slope at 1.0 mm/min rainfall intensity were -0.382 and 0.828, respectively; under the 2.5 mm/min rainfall intensity, the standard coefficients of vegetation coverage and slope were -0.342 and 0.876, respectively. Therefore, the slope gradient had a greater effect on the runoff start-time than vegetation coverage.

However, the vegetation coverage had a negative correlation with the influence of flow velocity, namely, as the vegetation coverage increased, the velocity of the slope surface decreased. In addition, the runoff flow velocity showed a linear positive correlation with slope. The standard coefficients of vegetation coverage and slope at 1.0 mm/min rainfall intensity were -0.897 and 0.334, respectively; at the 2.5 mm/min rainfall intensity, the standard coefficients of vegetation coverage and slope were -0.841 and 0.324, respectively. Therefore, the effects of vegetation coverage on flow velocity were greater than those of the slope gradient.

3.2 Runoff rate
The dynamic changes in the runoff rate calculated after each simulated rainfall experiment were in Fig. 3. The runoff rate increased with an increase slope, and the time to a stable runoff rate on the high slope was lower than that on the low slope. In addition, with increasing vegetation coverage, the runoff rate decreased, and the 70% vegetation coverage presented more obvious effects than other coverages on runoff reduction under two rainfall intensities. The runoff rate associated with each simulated rainfall event began to increase sharply at the initial stage of runoff generation and then tended to stabilize. Under the two rainfall intensities, the runoff rate was reduced and the delay of the started runoff response increased at lower rainfall intensities. At the 1.0 mm/min rainfall intensity, the runoff rate experienced a rapid increase before 20 min and reached a peak value at approximately 10 min (Fig. 3a). For the 2.5 mm/min rainfall intensity, the runoff rate exhibited a rapid increase before 5 min and reached a peak value at approximately 3 min (Fig. 3b).

Under the same rainfall intensity, the reduction in runoff yield decreased with increasing slope (Fig. 4). Under the 1.0 mm/min rainfall intensity, average runoff yield reduction of different slopes of 10, 15 and 20° was 28, 24, and 24%, respectively; at 2.5 mm/min rainfall intensity, the average runoff yield of the slopes of 10, 15, and 20° was 26%, 25%, and 23%, respectively. The reduction in runoff yield at a slope of 10° was greater than that found for the slopes of 15° and 20° at two rainfall intensities, indicating that high runoff was produced by steep hills and that runoff exceeded infiltration so that runoff was produced on the hillslope.
The reduction in runoff yield increased with increasing shrub-grass coverage under the same rainfall intensity (Fig. 4). As the vegetation coverage increased from 0 to 70%, the average runoff yield at 1.0 mm/min rainfall intensity decreased by 12, 18, 19, 23, 26, 33, 34, and 37%, respectively; runoff yield at 2.5 mm/min rainfall intensity decreased by 6, 9, 10, 27, 31, 35, 37, and 38%, respectively. The amplitudes of runoff reduction benefits by increasing vegetation coverage at 2.5 mm/min rainfall intensity showed greater changes than those under 1.0 mm/min, indicating that vegetation coverage could effectively improve runoff yield reduction benefits at two rainfall intensities. Furthermore, as the shrub-grass vegetation exceeded 42%, the runoff yield reduction at the 1.0 mm/min rainfall intensity was obviously greater than that under the 2.5 mm/min rainfall intensity. Under the conditions of a certain rainfall intensity, runoff yield decreased with increasing shrub-grass coverage and increased with increasing slope. High runoff was produced from plots at 2.5 mm/min rainfall intensity regardless of the vegetation coverage compared with those at 1.0 mm/min rainfall intensity. The results show that there was a quadratic function relationship between runoff yield and vegetation coverage with all fitting equations being significant (P<0.05) (Table 3).

3.3 Soil erosion rate

The soil erosion rate was strongly correlated with the vegetation coverage and slope gradient in both plots (Fig. 5). Regardless of the level of rainfall intensity, the rate of soil erosion decreased with the increase in shrub-grass vegetation coverage,
and exhibited an increasing trend with increasing slope. During the rainfall process, the soil erosion rate experienced a rapid increase at the beginning and then decreased with the change in rainfall duration, and finally tended to become stable. Compared with the 1.0 mm/min rainfall intensity, the soil erosion rate curve changed dramatically at 2.5 mm/min rainfall intensity.

Sediment yield increased with an increase in slope at different levels of shrub-grass vegetation coverage. At the 1.0 mm/min rainfall intensity, the average sediment yield reduction associated with the slopes of 10, 15, and 20° was 44, 38, and 36%, respectively; under the 2.5 mm/min rainfall intensity, the average sediment yield reduction was 32, 30, and 27%, respectively. The reduction in sediment yield associated with an increase in slope at 2.5 mm/min rainfall intensity was less evident than that under the 1.0 mm/min rainfall intensity.

Similar to runoff, sediment yield was significantly correlated with shrub-grass vegetation coverage, and the sediment yield observably decreased with the increase in vegetation coverage (Fig. 6). As the grass coverage increased from 0 to 70%, the average sediment yield at 1.0 mm/min rainfall intensity decreased by 20, 30, 31, 38%, 42, 48, 52, and 53%, respectively; at 2.5 mm/min rainfall intensity it decreased by 15, 17, 18, 29, 33, 38, 41 and 46%, respectively. The reduction in sediment yield as a result of increasing vegetation coverage at the 1.0 mm/min rainfall intensity was lower than that associated with the 2.5 mm/min rainfall intensity, which indicates showed high sediment production at a high rainfall intensity. At the 2.5 mm/min
rainfall intensity, it a characteristic of high runoff and high sediment production in combination with different shrubs and grasses during high rainfall events was observed. The sediment yield presented a quadratic function relationship with shrub and grass vegetation coverage, and all fitting equations were significant (P<0.05) (Table 4).

3.4 Analysis of the relationship between runoff and sediment yield

The relationships between cumulative sediment yield and cumulative runoff at different vegetation coverage levels under two rainfall intensities are shown in Fig. 7. As cumulative runoff increased, the cumulative sediment yield increased gradually and then increased slowly when shrub and grass vegetation coverage was greater than 60%. Furthermore, with increasing of vegetation coverage, the rate of increase in the cumulative runoff was greater than that of the cumulative sediment yield (Fig. 7a). At 2.5 mm/min rainfall intensity, the amplitudes of cumulative sediment yield obviously decreased as the vegetation coverage was greater than 40% (Fig. 7b). These results indicate that as the rainfall intensity increased, more vegetation coverage was needed to prevent water loss and soil erosion.

The relationships between cumulative runoff and sediment yield at two rainfall intensities can be fitted with a power function $S=aV^b$, where S represents the cumulative sediment yield (g), V represents the cumulative runoff (L), and a and b are the equation coefficients. The coefficient of determination (R^2) of all fitting equations was greater than 90% and significant at P<0.05 (Table 5). At the same rainfall
intensity, the coefficients \((a \text{ and } b)\) of the power function decreased significantly with increasing shrub-grass coverage, indicating that vegetation coverage played a dominant role in reducing sediment production and runoff. Otherwise, the coefficients \((a \text{ and } b)\) for the 1.0 mm/min rainfall intensity of the power function were smaller than those of the 2.5 mm/min rainfall intensity.

4 Discussion

In this study, grass-shrub vegetation coverage significantly influenced runoff and soil erosion. The study results show that the runoff rate and sediment production rate decreased with increasing vegetation coverage; in particular, the 70% vegetation coverage presented more obvious effects than the other coverage levels on runoff and soil loss under two rainfall intensities. The vegetation coverage could reduce the kinetic energy of the raindrops, and delay the runoff start-time. Vegetation covered plots and stems parts protect soil surface, and increase soil surface roughness. Moreover, vegetation roots can improve soil physical properties such as soil cohesion, soil aggregate, soil organic matter (Zhang et al., 2015). Rainfall intensity and slope are the major controlling factors that influence runoff and soil erosion. Under the same rainfall intensity, the reduction in runoff and sediment yield decreased with increasing slope. The speed of runoff flow and rate of infiltration were influenced by the slope gradient (Abrahams et al., 2003; Alaoui et al., 2011; Zhao et al., 2013b). The high runoff produced by steep hills and runoff exceeded infiltration, and the amount of erosion and sediment production increased (El Kateb et al., 2013;
Gilley et al., 1990; Xiao et al., 2011a; Zheng et al., 2008). At the different rainfall intensities, the reduction in runoff and sediment yield at higher rainfall intensities was greater than that at lower rainfall intensities. Characteristics of high runoff and high sediment production in combination with different shrubs and grasses during high rainfall events, which was observed consistent with previous findings (Wei et al., 2014; Xiao et al., 2011b). The lower rainfall intensity might allow more time to destroy the topsoil and increase the infiltration time and delay runoff generation. Runoff start-time and runoff flow velocity are two important parameters affecting runoff and soil erosion. The runoff start-time was delayed and the runoff flow velocity decreased with increasing of shrub-grass vegetation coverage. Moreover, the increase in runoff start-time with increasing coverage at the rainfall intensity of 1.0 mm/min was 2.18 times that of the 2.5 mm/min rainfall intensity. The shrub-grass vegetation coverage was improved on natural hillslopes, which was beneficial for surface runoff infiltration into the deep layers of soil and increased the resistance coefficient of slope flow, to prolong the start-time and reduce runoff flow velocity (Alaoui et al., 2011). In addition, a power function existed between the cumulative sediment yield and cumulative runoff yield at different shrub-grass coverage levels, which was similar to the results found by Zhao et al. (2013b). Furthermore, the result show that the coefficients \(a\) and \(b\) of the power function for the higher rainfall intensity were greater than those of the lower rainfall intensity. The energy of raindrops may be larger and the surface erosion was stronger at the high rainfall
The dynamic changes of in the sediment production rate are illustrated for the three slopes and two rainfall intensities at different shrub-grass coverage levels in Fig. 5. During the rainfall process, the soil erosion rate experienced a rapid increase and rapid decrease and finally tended to become stable. In the early stage of rainfall, soil particles were dispersed and had little cohesive force due to the low soil humidity sand were easily to be separated by raindrop splash erosion. With the rapid increase in soil moisture, the soil particles become more cohesive, and the soil erosion resistance increased. At the same time, because the erosion force of the rainfall increased slightly, it was not sufficient to damage the underlying soil and tended to be stable (Casermeiro et al., 2004). However, compared with the dynamic changes in the sediment production rate, the runoff rate associated with each simulated rainfall intensity started to increase sharply at the initial stage of runoff generation and then tended to stabilize. This was consistent with previous observations (Xiao et al., 2017; Zhao & Hou, 2018; Zhao et al., 2013a). This because the damage to the soil structure was not serious at the beginning of rainfall. Furthermore, the soil gradually became saturated and and the relatively small soil particles affected by splash erosion infiltrated into the lower soil. Thereafter, a soil crust was formed, and the runoff rate gradually became stable (Chen & Hao, 2017).

In the semiarid region of the Loess Plateau, 60~80% of the annual precipitation falls from June to September, mostly in rainstorms of high intensity and short duration.
Water loess and soil erosion on the slopes might be due to slope surface scouring during heavy rains (Pan et al., 2006). In this study, as the shrub and grass coverage increased, the reduction in runoff and sediment increased at the 1.0 mm/min rainfall intensity. In contrast, for a rainfall intensity of 2.5 mm/min, the runoff and sediment reduction varied greatly under different vegetation coverage levels, exhibiting the characteristics of high runoff and high sediment yield. In addition, the amplitudes of runoff reduction benefits by increasing vegetation coverage at 2.5 mm/min rainfall intensity showed greater changes than those under 1.0 mm/min, which was inconsistent with previous findings, such as those by Ding and Li. (2016) and Zhao et al. (2013b). This may be caused by difference in the soil environments and vegetation compositions. The runoff reduction benefit associated with different combinations of grass and shrub vegetation coverage was more obvious at the higher rainfall intensity. The reason for this was mainly as follows: the shrub plants are taller than 0.5 m, and their leaves can intercept rainfall, but they have little effect on the surface runoff, and only the roots and stems had a blocking effect on the runoff (Xiao et al., 2011b; Yu et al., 2014). Thus, as grass coverage increasing, the interception and blocking the effect of the grass on the raindrops increased, and the effect of splashing substantially decreased (Chen & Hao, 2017; Dai et al., 2016). Thereafter, more shrub and grass vegetation was planted for use in water and soil conservation.

4 Conclusions
Underlying surface conditions have significantly changed as a result of the implementation of large-scale vegetation recovery measures, which have inevitably affected the hydrologic process on the Loess Plateau, China. In this study, the processes of runoff and sediment yield in the shrub-grass plots with different shrub-grass coverage (0, 18, 26, 35, 42, 43, 60, 66, and 70%) and slopes (10°, 15°, and 20°) at two rainfall intensities (1.0 and 2.5 mm/min) were studied. The conclusions can provide a good reference for ecological environment management and vegetation construction on the Loess Plateau. The main findings are listed below.

Under the same rainfall intensity, vegetation coverage had a significant effect on runoff start-time, runoff flow velocity, runoff rate, and soil erosion rate on hillslopes. As vegetation coverage increased, the runoff start-time was delayed, and the runoff flow velocity decreased. Moreover, as the slope increased, the runoff start-time shortened, and the runoff flow velocity increased. The runoff start-time and runoff flow velocity both showed a significantly linear correlation with shrub-grass vegetation coverage. Moreover, the vegetation and slope gradient were important factors affecting the runoff start-time and slope flow velocity. In addition, the slope gradient played a dominant role in delaying the runoff start-time, while vegetation coverage was the main factor affecting flow velocity.

Runoff and sediment yield decreased with increasing of vegetation coverage, and increased as the slope increased. Vegetation coverage could effectively improve runoff yield reduction benefits at two rainfall intensities. At the 1.0 mm/min rainfall
intensity, the reduction in the runoff rate and soil erosion rate was greater than that at 2.5 mm/min. Moreover, there was a quadratic function relationship between runoff (sediment) yield and vegetation coverage. In addition, there was a power function relationship between cumulative sediment yield and cumulative runoff yield (P=0.05). The cumulative sediment yield increased with increasing cumulative runoff, but there was a threshold value.

Acknowledgments: The authors are grateful for the financial support of the National Key Research and Development Program of China (2016YFC0501707), Science and Technology Basic Work of China (2014FY210100), and Special Funds for Scientific Research Programs of the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A314021403-Q2).
References

Hydrological Processes, 12, 661-671.

Forestry & Urban Greening, 16, 43-49. doi:org/10.1016/j.ufug.2016.01.006

Zhang J. (2011). Variation of sediment load at the major tributaries in the middle reaches of Yellow River and its impact on the sediment flux to the sea. Ocean University of China (*In chinese*).

Tables:

Table 1 Calculation results of vegetation coverage

<table>
<thead>
<tr>
<th></th>
<th>Vegetation coverage</th>
<th></th>
<th>Vegetation coverage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mixed</td>
<td>Grass</td>
<td>Shrub</td>
<td>Mixed</td>
</tr>
<tr>
<td>1# Plot</td>
<td>70%</td>
<td>50%</td>
<td>35%</td>
<td>66%</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>30%</td>
<td>35%</td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td>42%</td>
<td>10%</td>
<td>35%</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>35%</td>
<td>0%</td>
<td>35%</td>
<td>18%</td>
</tr>
</tbody>
</table>
Table 2: Linear regression of runoff start-time and vegetation coverage and slope

<table>
<thead>
<tr>
<th>Rainfall intensity (mm min⁻¹)</th>
<th>Nonstandard equation</th>
<th>Standard equation</th>
<th>R²</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>T=117.353+1.676C-4.244S</td>
<td>T=-0.392C+0.828S</td>
<td>0.84</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>T=50.501+0.767C-1.6S</td>
<td>T=-0.342C+0.876S</td>
<td>0.88</td>
<td>27</td>
</tr>
<tr>
<td>1.0</td>
<td>V=0.250-0.002C+0.003S</td>
<td>V=-0.897C+0.334S</td>
<td>0.92</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>V=0.214-0.001C+0.002S</td>
<td>V=-0.841C+0.324S</td>
<td>0.81</td>
<td>27</td>
</tr>
</tbody>
</table>

Where \(T \) is the runoff start-time (s), \(V \) is runoff flow velocity, \(C \) is vegetation coverage (%), and \(S \) is slope (°).
Table 3 The relationship between runoff yield and vegetation coverage by fitting

<table>
<thead>
<tr>
<th>Rainfall intensity</th>
<th>Slope</th>
<th>Regression equations</th>
<th>R^2</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 mm/min</td>
<td>10°</td>
<td>$Q=99.71VC^2-276.78VC+385.33$</td>
<td>0.863</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>$Q=61.39VC^2-254.32VC+399.27$</td>
<td>0.888</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>$Q=-16.53VC^2-78.75VC+119.69$</td>
<td>0.887</td>
<td>9</td>
</tr>
<tr>
<td>2.5 mm/min</td>
<td>15°</td>
<td>$Q=124.08VC^2-456VC+754.26$</td>
<td>0.985</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>$Q=127.08VC^2-507VC+728.01$</td>
<td>0.979</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Q=200.88VC^2-523.59VC+801.87$</td>
<td>0.980</td>
<td>9</td>
</tr>
</tbody>
</table>

Where Q is runoff yield (L); VC is vegetation coverage.
Table 4 The relationship between sediment yield and vegetation coverage by fitting

<table>
<thead>
<tr>
<th>Rainfall intensity</th>
<th>Slope</th>
<th>Regression equations</th>
<th>R^2</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 mm/min</td>
<td>10°</td>
<td>$S=3.43V^2-523.5VC+36547$</td>
<td>0.979</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>$S=2.01V^2-438.55VC+39277$</td>
<td>0.985</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>$S=1.99V^2-434.65VC+41804$</td>
<td>0.985</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10°</td>
<td>$S=0.12V^2-242.3VC+34226$</td>
<td>0.979</td>
<td>9</td>
</tr>
<tr>
<td>2.5 mm/min</td>
<td>15°</td>
<td>$S=0.72V^2-281.83VC+36944$</td>
<td>0.950</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>$S=0.4V^2-246.46VC+38222$</td>
<td>0.949</td>
<td>9</td>
</tr>
</tbody>
</table>

Where S is sediment yield (L); VC is vegetation coverage.
Table 5 Correlation analysis between cumulative sediment yield (S) and cumulative runoff (V) under different shrub-grass coverage and 15° slope at two rainfall intensities

<table>
<thead>
<tr>
<th>Vegetation coverage</th>
<th>1.0 mm/min rainfall intensity</th>
<th>2.5 mm/min rainfall intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regression equation</td>
<td>R^2</td>
</tr>
<tr>
<td>18%</td>
<td>$S=902V^{0.51}$</td>
<td>0.97</td>
</tr>
<tr>
<td>26%</td>
<td>$S=853V^{0.50}$</td>
<td>0.98</td>
</tr>
<tr>
<td>35%</td>
<td>$S=600V^{0.56}$</td>
<td>0.96</td>
</tr>
<tr>
<td>42%</td>
<td>$S=479V^{0.58}$</td>
<td>0.96</td>
</tr>
<tr>
<td>43%</td>
<td>$S=669V^{0.51}$</td>
<td>0.97</td>
</tr>
<tr>
<td>60%</td>
<td>$S=401V^{0.57}$</td>
<td>0.96</td>
</tr>
<tr>
<td>66%</td>
<td>$S=412V^{0.55}$</td>
<td>0.98</td>
</tr>
<tr>
<td>70%</td>
<td>$S=241V^{0.64}$</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: