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Abstract: The bank slopes in hydro-fluctuation areas 

of reservoirs or lakes suffer from severe erosion due to 

an absence of protection. Waves are one of the 

important external forces that cause bank erosion and 

slope failures. However, the processes and quantified 

impacts of wave-induced erosion on slopes remain 

unclear under different water level-fluctuation 

conditions. This paper focuses on the characteristics 

of wave-induced slope erosion under three conditions: 

water level dropping (WLD), fixed (WLF) and rising 

(WLR). A steel tank with glass pane was used to 

simulate the wave-induced slope erosion in the three 

treatments. The slope elevation data were collected by 

using the method of the pin meter for every 15 

minutes from the beginning to the end, a total of 5 

times during all treatments. These data were 

processed by using software (SURFER 9.0) to get the 

slope micro-topography and the erosion volume. 

Then the temporal and spatial change of slope erosion 

was analysed according to the erosion amount or 

erosion rate calculated based on bulk density of slope 

soil. The results demonstrated that the soil erosion 

rates for different water level changing treatments are 

in the following order: WLR>WLD>WLF. For the 

erosion spatial variation, the middle part of the slope 

was the major source of sediment in the WLD. The 

upper part of the slope was the major source of the 

sediment for the other two treatments. Compared 

with the standard deviation (SD), the coefficient of 

variation (CV) based on the SD is more representative 

of variations in the soil surface roughness (SSR). 

Furthermore, the good fit between the SSR and soil 

erosion rate have the potential to be used to predict 

soil erosion. Above all, the injection angle of the wave 

determined the rate of erosion to some extent, and the 

fall-back flow of the wave could also influence the 

extent of erosion, deposition, and bank morphology. 

It is vital to choose the appropriate index (SD or CV) 

in the three water levels to improve the prediction 

accuracy. This paper could provide scientific 

knowledge to manage reservoirs or river banks. 
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Introduction  

Large number of dams and reservoirs have 

been constructed for the purpose of hydropower, 

irrigation, flood regulation, providing drinking 

water, pisciculture, etc. (Zhang and Lou 2011; Tang 

et al. 2018). Meanwhile, the water-level-fluctuating 

zone (WLFZ) was formed due to a seasonal 

hydrological regime (Zhang et al. 2018). For 

example, Three Gorges Reservoir has a WLFZ of 

about 30 m (Figure 1a) and covers an area of 

approximately 349 km2 (Bao et al. 2015a, b; Wang 

et al. 2016). The reservoir bank is highly vulnerable 

to the hydrological characteristics of flow events, 

which may lead to unexpected morphological 

effects of bank in the WLFZ (Powledge et al. 1989; 

Limber and Barnard 2018), such as increasing the 

riparian erosion rates (Abaci and Papanicolaou 

2009; Vietz et al. 2018). The water level fluctuation 

usually brings several environmental issues, in 

which bank collapse is one of the most serious ones 

(Duan and Julien 2010; Shi 2011). Furthermore, 

the wave-induced erosion cannot also be ignored 

(Figure 1b; Priestas and Fagherazzi 2011). 

Reservoir bank collapse not only causes the soil 

erosion but also the sediment deposition that may 

reduce the storage capacity of the reservoir and 

affect flood safety (Svendsen et al. 2009). 

Understanding the effects of the wave on the bank 

erosion with water level fluctuation can therefore 

have significant implications for the riparian land 

management and application of effective measures. 

Many studies have been reported regarding the 

bank erosion linked to the collapse mechanisms 

(Darby and Thorne 1996; Amiri-Tokaldany et al. 

2007). Mass failure and fluvial erosion were 

regarded as the two main interactive processes of 

bank collapse (Swartenbroekx et al. 2010; Volz et al. 

2012). Nagata et al. (2000) indicated that bank 

failure occurred throughout the entire fluvial 

process and was triggered by the flow. The bank 

erosion rate was proved to be linearly related to the 

nearshore velocity of the flow, which was the 

difference between the cross-sectional average 

velocity and the depth averaged velocity (Ikeda et 

al. 1981). Afterwards, Rinaldi and Nardi (2013) 

found that the changes of the pore water pressure 

lead to the bank mass failure owing to the flow into 

the banks. When the unsaturated pore water 

pressure was slowly close to saturation, bank 

erosion rates increased owing to the soil strength 

decreased (Owoputi and Stolte 2001; Rockwell 

2002). In addition, direct corrosion and slumping 

have been identified as two main processes of bank 

erosion (Hooke 1979; Davis and Gregory 1994; 

Duan 2005). The former appeared to be more 

directly controlled by river flow conditions and the 

latter mainly by soil moisture conditions.  

Furthermore, a considerable amount of 

research has recently concerned the numerical 

models linked to the bank failure (Langendoen and 

Simon 2008; Langendoen et al. 2009; Evangelista 

et al. 2015). Modelling bank failure has developed 

from the definition of a bank retreat rate, related to 

the single parameter, such as the near bank excess 

velocity (Chen and Duan 2006; Constantine et al. 

2009; Iwasaki et al. 2016). Kamal et al. (2016) 

simulated the non-cohesive bank using the 2D 

depth-averaged numerical model based on the date 

from the laboratory flume experiments and found 

that the numerical model was capable of 

reproducing the main features of the bank failure. 

A one-dimensional (1D) numerical model involving 

slope stability analyses was developed by 

Tingsanchali and Chinnarasri (2001), whereas 

Wang and Bowles (2007) developed a three-

dimensional (3D) slope stability model, both of 

 
Figure 1 The water-level-fluctuating zone (a) and 
wave-induced bank erosion (b) in the Three Gorges 
Reservoir. 
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them have considered cohesion effects. Although 

the bank failure processes including many 

complicated elements which were hard to be 

modeled, amounts of flume experiments have been 

developed to improve the prediction accuracy of 

the numerical model by the interpretation of the 

physical models. 

The wave, as an obviously important external 

force that induces bank erosion, has been studied 

for years. Some researchers found that the 

combination of wind-generated and boat-

generated waves, together with the flow 

characteristics was not negligible factors in the 

bank erosion (Hagerty et al. 1981, 1983). Then 

Oswalt and Strauser (1983) further demonstrated 

that boat-generated waves were important driving 

forces to the bank erosion on small rivers. Besides, 

some studies also have been conducted to 

understand the process and mechanism of wave-

induced slope erosion. In addition to the transport 

of sediment particles due to the velocities of the 

water flow under waves, the sediments on slopes 

may become unstable and then collapse under 

wave loads (Hooke 1979). Furthermore, the effects 

of wave characteristics on slope erosion have also 

been reported. Coops et al. (1996) found that the 

erosion of bank profiles was clearly related to the 

distribution of the wave energy over the slope, and 

the wave energy was quadratically related to wave 

height (Denny 1988). Tonelli et al. (2010) pointed 

that wave energy dissipation was maximized just 

above the marsh platform elevation, whereas wave 

reflection was reduced at the marsh edge. Spence 

(1982) found that the critical wave height that 

caused the soil surface to be scoured was related to 

the depth of the wave-mixed zone. Nanson et al. 

(1994) agreed the erosion rate of the channel banks 

depended on the wave frequency as well as the 

balance between wave energy and the resistance of 

the bank sediment, and concluded that riverbank 

erosion can be sharply reduced by controlling the 

maximum wave height to less than 30 cm.  

Currently, predictions or simulations of banks, 

coasts, or river erosion are mostly based on the 

effects of water erosion and gravity erosion (Begin 

1981; Armstrong et al. 2011; Midgley et al. 2012; 

Simon et al. 2013). Only a few researches have 

focused on the development of wave-induced 

erosion model. Evangelista (2015) used a 

numerical code of two-phase model based on 

experimental data of wave erosion of sand dike to 

obtain the reasonable predictive capability of the 

dike profile evolution. Moreover, great relationship 

between the wave-induced bed shear stress and 

wave patterns was obtained by Lim et al. (2013) 

using the SWAN wave model. However, the 

quantitative description of wave-induced erosion 

processes is still insufficient, especially the effects 

of water level fluctuations are always ignored. In 

addition, soil surface roughness is identified as one 

of the factors controlling surface runoff and soil 

particle transport (Jester and Klik 2005). However, 

its effects on soil erosion remains uncertain 

(Romkens et al. 2002). Some researchers reported 

that the erosion force of runoff and the transport 

capacity of the flow are reduced owing to the 

surface roughness decreasing the flow velocity 

(Johnson et al. 1979; Zheng et al. 2014). Meanwhile, 

Helming et al. (1998) found that dramatic surface 

variations may increase soil erosion and scour 

through concentrated flow. Therefore, it is 

necessary to figure out the responses and effects of 

soil surface roughness to wave-induced erosion on 

slope. 

Flume experiments were carried out to 

simulate the wave force on bank slope with water 

level fluctuation. The aims of this study were to (i) 

quantify the change of micro-topography on the 

slope surface during the wave erosion processes 

when the water level was dropping, fixed, and 

rising; and (ii) estimate the temporal and spatial 

variation of the erosion rate on the slope during 

water level fluctuation. The results of this study can 

not only provide a theoretical basis to establish a 

wave-induced erosion prediction model but also 

provide a scientific reference for protecting a river 

or reservoir bank. 

1    Materials and Methods 

1.1 Experimental device 

A tank with a 250 cm length, 50 cm width, and 

60 cm height made of a steel frame and plexiglass 

was used to test the wave erosion (Figure 2). An 

outlet with a faucet was installed in one bottom end 

of the tank to control the water level dropping 

speed by adjusting the discharge rate. The water 

level rising speed was controlled by adding water 
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directly through the pipes into the tank. In order to 

better observe experimental phenomena, a 

platform with a 15 cm height, 50 cm width and 60 

cm length was built on the other side of the tank 

using bricks and cement. 

The wave-generation system, which was 

placed on the side of the outlet, consisted of three 

parts, including the wave plate, speed motor and 

time relay. The wave plate was fixed at the bottom 

of the tank and could rotate around the shaft of the 

bottom. The speed motor pulled the wave plate to 

make it rotate around the shaft to make the wave. 

It controlled both the height and forward velocity 

of the wave. The time rely made the wave plate 

regularly swing to create continuous waves in a set 

frequency. 

The pin metre method was used to measure 

the micro-topography (Wolman 1959; 

Vandekerckhove et al. 2001). The experimental 

device is shown in Figure 3. A wood plate placed on 

the top of the slope and fixed on the tank of steel 

frame, with a 52 cm length, 52 cm width, and 2 cm 

thickness had 121 small holes arranged in 11 lines 

and 11 columns. 121 iron pins, 50 cm in length and 

2 mm in diameter. When these pins were slightly 

inserted into the small holes until gently reaching 

the slope surface during test, a digital camera was 

used to take pictures of the steel rules welded in a 

row. The height of the pins out of the plate were 

read on the computer, then converted to the height 

of the measuring points of the slope. 

1.2 Test soil slope layout 

The tested soil, typical yellow brown soil from 

the WLFZ of Three Gorges Reservoir (E 106°50'-

110°50', N 29°16'-31°25') was prepared for the 

research (Qian et al. 2016). The soil collected from 

the top layer (0-30 cm) was air-dried and sieved 

through a 5 mm mesh in order to remove roots and 

weeds. The particle size distribution was 

determined by using Malvern Mastersizer 2000 

laser diffraction device (Malvern Instruments Ltd. 

UK), and the soil consisted of 20.0% 

clay (<0.002 mm), 55.9% silt (0.002 

to 0.05 mm) and 24.1% sand (0.005 to 

2 mm). The bulk density for the tested 

soil was 1.30 g/cm3 by the method of 

core cutter used. 

The area of steep slope (>25°) is 

about 71.48 km2 which contribute 

approximately 55.29% soil loss related 

to the WLFZ in Three Gorges 

Reservoir (Wu et al. 2012; Tang et al. 

2013). Therefore, a steep slope with 

gradient of 30° was designed to 

simulate the effect of the wave on the 

steep slope. The soil slope that was 

paved on the platform was 50 cm 

width and 50 cm length in horizontal 

projection. The slope line was drawn 

on the plexiglass tank before packing. 

And then the wood plate was placed 

along the slope line when packing was 

performed layer by layer (5 cm depth 

per layer) to obtain a uniform average 

bulk density of approximately 1.3 ± 

0.05 g cm−3. After packing, the soil was 

soaked with water until surface flow 

occurred by using an electric sprayer 

to further reduce the variability caused 

by packing (Xiao et al. 2017). 

 

Figure 2 The sketch map of the experimental installation. 

 

Figure 3 Experimental device map of the pin meter method. 
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1.3 Design of the experiments 

There were three treatments of water level 

fluctuation, including the fixed (WLF), dropping 

(WLD), and rising (WLR) test, and each treatment 

was in triplicate. The water level was set at 2/3 of 

the slope, namely, 35.0 cm height, in the WLF test. 

In the WLD and WLR tests, the initial water levels 

were 35.0 cm and 19.4 cm height, and ended at 

19.4 cm and 35.0 cm, respectively. The WLD and 

WLR were at an average speed of 0.26 cm/min. 

During the tests, the wave height, forward speed, 

WLD and WLR speed were set according to the 

model scale and gravity similarity principle based 

on the records in the Three Gorges Reservoir (Li et 

al. 2002). The wave parameters were designed as 

follows: the wave height was approximately 8~10 

cm, the frequency was 30 times/min, the wave 

speed was approximately 1.0 m/s. 

The test lasted for 1 hour according to the 

WLD and WLR speed combined with the height. 

The slope elevation data were obtained by the pin 

metre method every 15 minutes from the beginning 

to the end during the tests. The coordinate axis was 

established at the bottom of the slope in order to 

obtain the three-dimensional coordinates of 121 

points. Then these data were meshed by use of the 

software (SURFER 9.0), generating the 3D 

Wireframe Map. 

1.4 Data processing 

The amount of soil loss from the slope was 

calculated as: 

                           M V ρ                              (1) 

where M is the amount of soil loss, ρ is bulk density, 

V is the volume of eroded soil obtained by 

comparing the digital elevation model (DEM) 

based on the slope elevation data which were 

collected at the different times. The DEM of slope 

at the different times were generated using 

SURFER software version 9.0 (American Golden 

Software Corporation). 

 The soil surface roughness (SSR) is an 

indicator of the quantification of micro-topography, 

which can be expressed by the standard deviation 

(SD) and coefficient of variation (CV) of slope 

elevation (Garcia-Moreno et al. 2008, 2010). The 

SD accounts for the random and oriented soil 

roughness, and was calculated as: 

2

1

1
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1

N
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S D Z x Z

N


  
 

              (2)  

where 
i

x  is the point elevation measurements, 

 Z x  is the elevation at location x , Z  is the 

average value of the set   i
Z x  and N  is the 

number of data points considered. 

The CV was calculated as: 

S D
C V

Z
                               (3)  

2    Results 

2.1 Micro-topography and erosion 
quantification 

Figure 4 shows that the micro-topography of 

the slope was obviously different among the three 

treatments of water level fluctuation. In the WLD 

process, a layer of the wave-cut notch was formed 

on the slope near the water surface. The eroded soil 

was deposited at the lower one-third of the slope 

(Figure 4a, 30 min). As the water level continually 

dropped, a second layer of wave-cut notch was 

formed at approximately 5 cm below the first layer. 

After a long period of scouring, the slope foot was 

smoothed (Figure 4a, 60 min). 

During the WLF and WLR treatment, wave-

cut notches were formed on the slope near the 

water surface during the first 15 minutes (Figures 

4b and 4c). Then, the wave-cut notch disappeared 

later under the continuous effects of the waves, but 

the processes of disappearance were different 

between them. For the WLF, the slope was first 

subjected to wave breaking pressure, and the wave-

cut notch was formed gradually. Then, the lower 

part of slope was increasingly hollowed out by the 

flow along the slope, and the upper part collapsed 

due to gravity. For the WLR, the position of the 

wave attacking slope continually moved upward. 

Then, the lower wave-cut notch was gradually 

washed away by the downward water flow. 

2.2 Soil surface roughness (SSR) 

Figure 5 indicates the variation of SD and CV 

at different positions of the slope at different times 
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for three water level treatments. For the WLD 

(Figures 5a and 5d), the SD reduced slightly from 

the beginning to the end, from approximately 2.7 

cm to 2.4 cm. However, the CV increased slightly 

during the whole process, from approximately 17.0% 

to 18.5%. For the WLF (Figures 5b and 5e), the SD 

and the CV were greatly reduced during the first 45 

mins and then increased during the last 15 mins. 

This indicates that the slope topography underwent 

a great change during the last 15 mins. For the 

WLR, the SD almost did not change during the first 

15 mins (Figure 5c). However, the CV increased 

slightly by approximately 2.0% in the first 15 mins 

(Figure 5f). In the next 15 mins, the SD and the CV 

drastically reduced. In the last 30 mins, the SD 

decreased slightly from 1.6 cm to 1.4 cm, and the 

CV decreased slightly by approximately 2.0%. 

The average values of SD and CV in the WLD 

were the largest and most stable among the three 

treatments for all times (Figure 5). It indicates that 

the WLD had the highest SSR and lowest SSR 

changing rate among the three treatments. For 

both of SD and CV, the fluctuation of the curve 

around the average line represented the changing 

values on different position. The WLD had more 

intense fluctuations than that of both the WLF and 

 

Figure 4 Topography changes of the slope for different water level changing process: (a) dropping; (b) fixed; (c) 
rising. 
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WLR. This indicates a more uneven slope surface 

in the WLD than the other two treatments. 

The average change rates of SD and CV for the 

entire slope of the three treatments followed the 

order of WLD<WLR<WLF (Table 1). For the WLD, 

the SD of the average speed decreased by 7.5% 

throughout the process while the CV in the 15 min 

was much larger than at other times. This indicates 

that the topography of the slope had the largest 

change during the first 15 min for WLD. For the 

WLF, the SD and the CV were reduced by 53.7% 

and 45.8% in the first 45 mins, respectively and 

 

Figure 5 Changing of the standard deviation (SD) and coefficient of variation (CV) for the soil surface roughness for 
different parts of the slope in different water level changing processes: (a, d) dropping; (b, e) fixed; (c, f) rising. 
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then increased slightly in the last 15 mins. This 

indicates that the slope topography gradually 

changed to be flat after erosion and deposition. For 

the WLR, the SD decreased by 1.1% while the CV 

increased by 10.5% in the first 15 mins. Then, the 

SD and CV decreased by 38.4% and 21.2% in the 

next 15 mins, respectively. In the last 30 mins, both 

of them decreased slightly. This indicates that the 

topography of slope changed very quickly in the 

second 15 mins. 

2.3 Slope erosion 

Figure 6 shows that the soil erosion rate of 

different water level changing treatments followed 

the following order: WLR>WLD>WLF. The 

erosion rate of the WLR in the first 15 mins was the 

largest, and then decreased by 19.7% in the 15-30 

mins. In the later 30 mins, the erosion rates were 

very small (close to zero). For the WLF and WLD, 

the erosion rates were gradually decreased from 

the first 15 mins to the end. The decrease rate of 

the WLF was larger than that of the WLD. 

The slope along the vertical projection length 

direction was divided into three parts: lower part 

(0-20 cm), middle part (20-35 cm) and upper part 

(35-50 cm), shown in Figure 4. The spatial 

distribution of the contribution rate to the erosion 

amount is shown in Figure 7. It indicates that the 

upper and middle parts of the slope were the main 

sediment sources. The upper part in WLF and WLR 

treatments contributed 89.2% and 56.5% to 

erosion amount, respectively. The middle part 

contributed 61.6% in WLD treatment. Meanwhile, 

not all of the eroded soil was transported out of the 

slope, as 31.8% of the sediment was deposited in 

the lower part of the slope in the WLF treatment. 

2.4 Relationship between the SSR and 
erosion rate 

Figure 8 shows that the good coefficients of 

determination (R2) were identified to strengthen 

the relationship between the SSR (SD and CV) of 

the entire slope and the soil erosion rates in the 

three water level treatments. These R2 were larger 

Table 1 The average change rate of standard deviation (SD) and coefficient of variation (CV) for soil surface 
roughness of entire slope in different water level changing process. 

Time 
(min) 

Dropping Fixed Rising 
SD 
(cm) 

Change 
rate (%) 

CV 
(%) 

Change 
rate (%) 

SD 
(cm) 

Change 
rate (%) 

CV 
(%) 

Change 
rate (%) 

SD 
(cm) 

Change 
rate (%) 

CV 
(%) 

Change 
rate (%) 

0 8.6 / 54.3 / 8.1 / 52.4 / 8.2 / 48.5 / 
15 8.6 -0.1 70.0 28.9 6.4 -21.4 45.5 -13.2 8.1 -1.1 53.6 10.5 
30 8.1 -6.6 58.9 8.5 4.4 -46.6 32.1 -38.7 5.0 -38.4 38.2 -21.2 
45 7.7 -11.2 58.4 7.6 3.8 -53.7 28.4 -45.8 4.3 -47.4 31.8 -34.4 
60 7.6 -12.2 58.9 8.5 4.3 -47.7 35.5 -32.3 4.5 -45.4 32.7 -32.6 
A-V 8.1 -7.5 60.1 -13.4 5.4 -42.3 38.8 -32.5 6.0 -33.1 41.0 -19.4 

Note: The change rates of SD and CV in different time period are over that in 0 min. Positive value means increase, 
negative value means decrease. A-V represents average value. 

 

 

Figure 6 Soil erosion rates and change rates for 
different periods during the three treatments of the 
water level dropping, being fixed and rising. A negative 
value denotes a decreasing soil erosion rate. 
 

 

Figure 7 Contribution rate to the erosion amount on 
different slope positions during three treatments of the 
water level dropping, being fixed and rising. Positive 
value means erosion, negative value means deposition. 
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than 0.70, except for the CV in the WLD which had 

an R2 of 0.34. Thus, the SSR has potential to be 

used to predict the soil erosion rate. 

3    Discussion 

3.1 Wave-induced slope erosion 

Figure 6 shows that the majority of the slope 

erosion happened in the first 15 mins for the WLF 

treatment. This may because the wave breaking 

point was fixed at a slope position near the water 

surface, and the slope was rapidly eroded by the 

continuous hitting of the wave (Tonelli et al. 2010). 

After 15 mins, the slope at the fixed water level 

flattened (Figure 4b, 30 min). The effects of the 

wave breaking pressure on the slope decreased 

because of the lower injection angle of the wave 

(Khalifa and Zahra 2014). However, the collapse of 

the upper slope could provide abundant sediment. 

Therefore, the soil erosion rate was still relatively 

high. From 30 to 60 mins, the soil erosion rate 

dropped to a very low level because the upper slope 

was completely eroded (Figure 4b). The falling 

back flow along the slope was the only driving force 

that took away soil particles (Doro and Aidun 

2013). However, the transporting capacity of the 

slope surface flow was limited because of the great 

resistance of the tank water to the falling back flow. 

As for the WLD and WLR, the soil erosion rate 

was maintained at a high level in the first 30 mins 

(Figure 6). This could be ascribed to the fact that 

the changing breaking points of the wave with a 

dropping or rising water level could continually 

provide energy to breakdown the soil particles by 

wave hitting and transport the sediment by falling 

back flow (Sambe et al. 2011; Mohsin and Tajima 

2014). Meanwhile, with the change of the water 

level, the slope could be exposed to the continual 

wave, providing enough soils as sediment sources 

(Vincent and Hanes 2002). After 30 mins, for the 

WLD the water level dropped to the middle or 

lower part of slope where the deposition occurred. 

That led to a smaller slope gradient, resulting in 

less of an injection angle of the wave and thus a 

lower wave breaking pressure on the slope 

(Okamura 1993). For the WLR, the water level was 

raised to the middle and upper parts of the slope, 

where the soil was completely eroded in the first 30 

mins. This was because the lower part was eroded 

at first, and the middle and upper parts collapsed 

due to the gravity without the support of the lower 

part (Chaudhry and Naseem 2000). Finally, in the 

last 30 mins very limited sediment was taken away 

from the slope by the falling back flow along the 

slope. 

Some features of the wave, e.g., height, 

injection velocity, and frequency, could influence 

the slope erosion (Benumof et al. 2000; Ruggiero 

et al. 2001; Trenhaile and Kanyaya 2007). In this 

study, the features of the wave were controlled and 

kept constant. Therefore, the water level change 

could obviously contribute to wave erosion. During 

erosion processes, the changing water level 

continually changes the injection point of the wave 

on the slope, and thus changes the effect position 

of the erosion driving force. The fall-back flow of a 

wave could also influence the extent of the erosion, 

deposition, and bank morphology (Hooke 1979). In 

addition to the individual effects of the wave, the 

river flow along the bank and rainfall could also 

 

Figure 8 Relationship between the indexes of the soil 
surface roughness: standard deviation (SD) and 
coefficient of variation (CV) of the entire slope, and the 
soil erosion rates in the three treatments of the water 
level dropping, being fixed and rising. 
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contribute to the bank erosion (Saynor and Erskine 

2006; Artemi and Doerr 2007). The 

comprehensive effects of those external forces on 

the bank erosion should be researched in the future. 

3.2 Soil surface roughness 

The SSR was used to describe the micro-

topography changes by using two indexes: SD and 

CV. The SD represents the change of slope height 

relative to the average height, reflecting the 

fluctuation of the slope surface, while the CV 

reflects the slope topography by eliminating the 

influence of changing the average height. 

According to Table 1, the average SD was gradually 

reduced while the average CV increased for the 

WLD. That could be attributed to changing the 

average height (Figure 4). In addition, two layers of 

the wave-cut notch were formed one after another, 

resulting in a decrease in the average height of the 

slope. This kind of geomorphology is conducive to 

siltation and is detrimental to reservoir flushing 

and muddying (Valero-Garces et al. 1999). For both 

the WLF and WLR, their SD and CV showed 

similar trends (Table 1) because of the slight 

change in the average height of the slope after 15 

mins (Figure 4). 

The Random Roughness index (RR) is one of 

the most widely used soil surface roughness 

indexes (Currence and Lovely 1970). The oriented 

roughness should be considered due to the parallel 

action of the waves on the slope (Abrahams and 

Parsons 1990; Zheng et al. 2014). In this study, the 

SD was used to characterize both the random 

roughness and oriented roughness (Garcia-Moreno 

et al. 2008, 2010). However, the waves action may 

dramatically change the average height of the slope. 

This may lead to the SD not being able to 

accurately describe the change in the micro-

topography. Thus, the CV may represent the 

variation of the soil surface roughness better than 

the SD, because it eliminates the influence of 

changing the average height (Garcia-Moreno et al. 

2008). 

3.3 Applications and future research needs 

The good fit between the SSR (SD and CV) of 

the entire slope and soil erosion rate for the three 

water level treatments were found (Figure 8). 

Although the data from simulated experiments in 

laboratory may different with that from natural 

slope (Evangelista 2015), the logarithmic functions 

also have the potential to be used or provide a 

possible way to predict the erosion rate, especially 

when data other than the SSR is difficult to obtain. 

For example, the slope erosion under water is hard 

to predict because very limited information can be 

obtained. The SSR is a factor that can be easily 

obtained in this situation, and it may be used to 

predict soil erosion. 

The different position and degree of soil 

erosion or deposition under three water level 

treatments may be caused by the changing 

injection point of the wave on slope. Therefore, to 

reduce the impact of wave-induced slope erosion, it 

is necessary to consider the effects of changing 

injection point on slope. The erosion control 

efficiency could be improved by focusing on the 

potential serious damaged slope position based on 

the spatial distribution of erosion. 

This study used a homogeneous and straight 

slope, which may not reflect the true condition of a 

bank slope. In the WLFZ, the reservoir water 

pressure, soaking time and dry-wet alternating 

amplitudes of the soil on the bank slope have 

obvious spatial vertical gradients (Poulos 1972). In 

addition, the soil properties at different elevations 

on the slope may vary (Thorne 1981). The slope 

erosion processes on non-cohesive and cohesive 

soil banks with or without vegetation were 

completely different (Michaelides et al. 2009; Liu 

et al. 2014; Yu et al. 2015; Zhong et al. 2016, 2018). 

These factors need to be studied further. 

4    Conclusions 

The effects of wave-induced slope erosion 

under three treatments were studied. The soil 

erosion rates for the different water level 

treatments were in the following order: 

WLR>WLD>WLF. Erosion mainly occurs during 

the first 30 minutes in the WLR. For the WLF and 

WLD, the erosion rates gradually decreased from 

the first 15 minutes to the end, and decreased faster 

for the WLF than the WLD. For the erosion spatial 

variation, the middle part of the slope was the 

major source of sediment for the WLD, while the 

upper part of the slope was the major sediment 
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source for the WLF and WLR. The injection angle 

of the wave determined the rate of erosion to some 

extent, and the fall-back flow of the wave could also 

influence the extent of erosion, deposition, and 

bank morphology. The result can provide 

engineering practice reference to prevent the wave-

induced slope erosion.  

Both the SD and CV showed a more uneven 

slope surface for the WLD than for the other two 

treatments. The CV could describe the variation in 

the soil surface roughness better than the SD on 

account of the influence of the changing average 

height eliminated. The good fit between the SSR 

and soil erosion rate have the potential to be used 

to predict slope erosion. Furthermore, it is vital to 

choose the appropriate index (SD or CV) in the 

three water levels to improve the accuracy of 

prediction. To develop the prediction model, the 

interactions between hydrologic elements, 

hydrodynamics, sediment transport processes and 

geotechnical aspects should be taken into account 

and be studied in the future. 
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