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a b s t r a c t

Reactive oxygen species (ROS) play important roles in plant growth, development, responses to abiotic
and biotic stresses. Hypersensitive response (HR)-like cell death is often associated with excess ROS.
However, how a calcium-dependent protein kinase (CPK) modulates this process remains elusive in
rapeseed (Brassica napus L.). In the present study, we identified and characterized CPK6L from rapeseed
as a novel regulator of ROS and cell death. The subcellular localization of BnaCPK6L was investigated
through GFP and was found to be located at the endoplasmic reticulum membrane. Overexpression of
the constitutively active BnaCPK6LCA resulted in significant accumulation of ROS and HR-like cell death
than the full-length. A quantitative RT-PCR survey identified that the expression levels of a few ROS, cell
death and defense-related marker genes were up-regulated upon BnaCPK6LCA expression. Mating-based
split ubiquitin system (mbSUS) screening revealed that BnaCPK6L interacted with BnaRBOHD (Respi-
ratory Burst Oxidase Homolog D), which was validated by bimolecular fluorescence complementation
(BiFC). An in vitro phosphorylation assay indicated that BnaCPK6L phosphorylated BnaRBOHD. Lastly, we
also found that three 2C type protein phosphatases (PP2Cs) interacted with BnaCPK6L. Taken together,
this study indicates that BnaCPK6L plays an important role in ROS and HR-like cell death through
interacting with and phosphorylating RBOHD.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

Reactive oxygen species (ROS) act as double-edged swords in
plants. At low concentrations, they act as signal molecules to
regulate growth, development and resistance to abiotic stresses; at
high concentrations, ROS are toxic and damage many different
cellular components [1]. Many different stressors can induce ROS
accumulation [1]. Therefore, a tight control of ROS level is essential
for trade-off between growth and stress or disease resistance.
Plants have evolved an array of enzymes and non-enzymatic sys-
tems to produce or generate ROS [1]. Plasma membrane-localized
respiratory burst oxidase homologs (RBOHs), homologs of
mammalian NADPH oxidase (NOX), constitute a group of enzymes
responsible for producing ROS [2]. It is reported that RBOHs play a
pivotal role in both development and defense against pathogens
).
[3]. Existing evidences demonstrate both transcription and post-
translational phosphorylation play important roles in mediating
the activities of RBOHs [4,5].

Ca2þ is a ubiquitous second messenger in eukaryotes. Calcium-
dependent protein kinases (CPKs) constitute a family of Ser/Thr
protein kinases broadly distributed in plants that decode Ca2þ

signals [6]. CPKs consist of four domains, which are N-terminal
variable domain (V), protein kinase domain (K), autoinhibitory
junction domain (J) and C-terminal calmodulin-like domain (C) [7].
Past studies showed that the highly variable N-terminal domain
may contain potential myristoylation or palmitoylation sites that
are responsible for membrane association and substrate recogni-
tion [8,9]. Early studies also indicated that activations of plant CPKs
relies on relief of autoinhibition [10,11].

CPKs are encoded by multigene families consisting of 34
members in Arabidopsis, and 31 in rice, which are clustered into
four distinct subgroups [12,13]. Plant CPKs have been demonstrated
to play important roles in many different physiological processes,
including growth and development, hormone signalings, abiotic
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Fig. 1. Phylogenetic, subcellular localization and expression assays of BnaCPK6L. (A) A,
Scheme of domain structure of BnaCPK6L. The N-terminal amino acid sequence is
indicated at the top. A kinase catalytic domain is joined via a junction (J) domain to a
calmodulin-like domain (CaM) with four calcium-binding motifs. (B) Phylogenetic
relationship of BnaCPK6L with representative CPKs from various plants species. Per-
centages of bootstrapping of 1000 replicates are shown on the branches. (C) Subcel-
lular localization of BnaCPK6L-GFP in N.benthamiana. CBL1n-mCherry (upper panel)
and CHS-mCherry (lower panel) were co-expressed as the plasma and ER markers,
respectively. The leftmost panel is bright field, the 2nd GFP field, the 3rd mCherry field,
and the rightmost an overlay of the three images. Scale bar, 75 mm. (D) qRT-PCR assay
of responses of BnaCPK6L to SA, JA, H2O2 and S. sclerotiorum treatments for 6 h. Values
are means± S.E. of three independent biological replicates.
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and biotic stress tolerance [6,14,15]. For example, a few CPKs in
Arabidopsis and rice have been found to positively or negatively
regulate stress and disease tolerance by modulating ABA signaling
and/or ROS levels [16e18].

Existing evidences show that CPKs can affect ROS levels through
influencing the activities of RBOHs through phosphorylation in
Arabidopsis and potato [4,8,19]. For example, StCDPK4 and StCDPK5
phosphorylate StRBOHB and regulate the oxidative burst [19].
AtCPK5 phosphorylates RBOHD and activates its activity [4].
Nevertheless, the substrates, functions and regulatory mechanisms
of many CPKs in plants wait to be explored.

In contrast, protein phosphatases act as negative regulators of
kinases-mediated signaling processes. In higher plants such as
Arabidopsis, type 2C protein phosphatases (PP2Cs) constitute a
large family with 76 members [20]. Among PP2Cs, clade A PP2Cs
with nine members in Arabidopsis are reported to negatively
regulate ABA signaling and stress responses [20]. AtCPK11 was
found to interact with several members of clade A PP2Cs [21],
suggesting that PP2Cs may antagonize CPKs. However, an investi-
gation of interactions between clade A PP2Cs and ROS-related CPKs
in plants has not been well established.

Rapeseed (Brassica napus L.) is an important oil crop in China
and world-wide, providing editable oil and pasture to feed live-
stock. Previously, we systematically identified and cloned the cDNA
sequences of a total of over 50 CPK and PP2C genes from rapeseed
and performed a preliminary investigation [22]. Here, we studied
the function and regulatory mechanism of BnaCPK6L.

2. Materials and methods

2.1. Plant materials and growth conditions

Rapeseed and Nicotiana benthamiana seeds were surface-
sterilized and sown on 1/2 x MS medium for 7 d before trans-
ferred into a soil mix and grew in a growth chamber. The setting is a
photoperiod of 14 h light/10 h dark with a light intensity of
120 mEm�2 s�1, and a temperature of 22 �C and a relative humidity
of 60e70%.

2.2. Phylogenetic tree construction and bioinformatics

The CPK sequences of representative plant species were
retrieved from TAIR (www.arabidopsis.org) and NCBI databases.
Multiple alignments of protein sequences were performed using
ClustalX1.83. A phylogenetic tree was reconstructed using a
maximum parsimony algorithm with MEGA6 software. The myr-
istoylation and palmitoylation motifs were predicted by ExPaSy
Myristoylator (http://web.expasy.org/myristoylator/) and CSS-Palm
3.0 (http://csspalm.biocuckoo.org/).

2.3. Subcellular localization and confocal microscopy

The coding region of BnaCPK6L was PCR-amplified and cloned
into a binary vector of pYJGFP. After confirmation, the recombinant
plasmid and P19 strain of tomato bushy stunt virus were intro-
duced into the competent cells of Agrobacterium tumefaciens
GV3101. Agroinfiltration into the leaves of 28-d-old N. benthamiana
was performed as described previously [23]. Fluorescence signals
were observed 2 d later on a TCS SP8 confocal microscope (Leica,
Germany).

2.4. RT-PCR and quantitative RT-PCR (qRT-PCR)

Rapeseed seedlings of 7 d old were treated with 50 mM jasmonic
acid (JA, Sigma, USA), 2mM salicylic acid (SA, Sigma), 20mMH2O2
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(Alfa Aesar, France) and 18-d-old seedlings were inoculated with
S. sclerotiorum or agar plug (control) as described previously [23].
Total RNA was extracted from leaves using Trizol (Sangon, China).
After DNaseI treatment using the RapidOut DNA-free kit (Thermo
Fisher Scientific), 2.5 mg RNA was used to synthesize cDNA using
MMLV (RNase H-) reverse transcriptase and Oligo(dT)18 primers
(TaKaRa). PCR was performed with high-fidelity PrimeStar HS DNA
polymerase (TaKaRa, Japan). cDNA samples for qRT-PCR were
diluted ten times with sterile water and 2 mL of cDNA was used in
qPCR using SYBR Green I premix (Baiao, China) on a CFX96 ther-
mocycler (Bio-Rad, USA). UP1 and UBC9 of rapeseed and L23 and
PP2A of tobacco were used as reference genes and fold changes
were calculated according to Ref. [22]. Three independent biolog-
ical replicates were prepared and analyzed.
2.5. Site-directed mutagenesis

Site-directed mutagenesis PCR was performed via overlap PCR
using high-fidelity Pfu DNA polymerase (Bioer, China) and the
resulting plasmid was confirmed by sequencing. A total of six
amino acid residues were mutated to construct BnaCPK6LCA and
they are A361P/V362D/Q368P/F369E/S370D/A371L [8]. Primers are
listed in Table S1.
2.6. Transient expression assay and physiological measurements

The CDS of BnaCPK6L, BnaCPK6LCA and GFP were cloned into a
binary vector p35SFC and confirmed. Agroinfiltration into the lower
epidermal side of 30 d old leaves of N. benthamiana plants were
performed as described before [23]. Electrolyte leakage was
measured according to Ref. [23]. Quantitative assays of malon-
dialdehyde (MDA) was performed as previously described [24].
Fig. 2. Transient overexpression of constitutively active BnaCPK6L triggered ROS accumulat
GFP was expressed as a control. (B) Photographs of tobacco leaves expressing BnaCPK6L, Bn
right panels represent the front, back sides and DAB staining of accumulated ROS, respec
expressing GFP, BnaCPK6L or BnaCPK6LCA at different time points, respectively. Data are mea
non- and significant differences (P<0.05).
2.7. Mating-based split ubiquitin system（mbSUS）assay

BnaCPK6L CDS was cloned into pX-NubWTgate vector and
transformed into the yeast strain THY.AP5. The CDSs of BnaRBOHs
were cloned into pMetYCgate vector and transformed into the yeast
strain THY.AP4. Diploid yeasts were selected on the selective SD
medium. The titration assay was performed by growing yeast col-
onies on the synthetic minimal medium lacking leucine (L), tryp-
tophan (W), histidine (H) and adenine hemisulfate (A) (SD-LWHA).
b-galactosidase assay was performed as previously described [25].
2.8. Bimolecular fluorescence complementation (BiFC) assay

The CDS of respective genes were subcloned into 35S-SPYNE(R)
173 or 35S-SPYCE(M) vector [22]. Resulting plasmids were intro-
duced into A. tumefaciens strain GV3101 cells, which were co-
infiltrated together with the P19 strain into true leaves of 3-
week-old N. benthamiana. YFP fluorescence was observed 3 d af-
ter infiltration on a confocal microscope (Leica, Germany).
2.9. Prokaryotic protein induction, purification and
phosphorylation assay

Relevant genes (CDS) were subcloned into vector of pGEX-4T-1
(Amersham). Recombinant plasmids were transformed into BL21
(Codon Plus) strain of E.coli (Novagen), before induced by 0.5mM
isopropyl b-D-thiogalactoside (IPTG) for 8 h at 25 �C. Cell pellets
were collected and then lysed by sonication in 1� PBS. GST-tagged
proteins were purified with GST-bind resin (Novagen) according to
manufacturer's instructions.

Purified proteins were incubated in a kinase assay buffer
(50mM Hepes, pH 7.5, 10mM MgCl2, 2mM DTT, 5mM EGTA,
4.6mM CaCl2 and 50 mM ATP) in triplicate for 30min at 25 �C. Then
ion and HR-like cell death. (A) Scheme of sites of infiltrated samples in tobacco leaves.
aCPK6LCA and GFP control at different days post-infiltration (dpi). The left, middle and
tively. (CeD) Quantification of relative conductivity and MDA contents in leaf tissues
ns of three independent assays± S.E. Identical and different lowercase letters represent



Fig. 3. Identification and validation of protein-protein interactions (PPI) between
BnaCPK6L and BnaRBOHs. (A) qRT-PCR analysis of expression levels of ROS and
defense-related marker genes. GFP (control) and BnaCPK6LCA were transiently
expressed in tobacco leaves for 2 and 3 dpi before sampled. qRT-PCR was used to
determine expression level of six marker genes. Data are means ± S.E. of three bio-
logical replicates. (B) Mating-based split ubiquitin system (mbSUS) examination of PPI.
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an ADP-Glo kinase assay kit (Cat#V9101, Promega) was used to
quantify ADP produced from kinase reactions following the man-
ufacturer's manual. In brief, kinase reactions were stopped by
adding ADP-Glo reagent and incubated for 1 h at 25 �C. Then, kinase
detection reagent was added to each reaction tube and incubated
for 1 h at 25 �C. Luminescence was recorded with a GloMax 20/20
luminometer (Promega).

2.10. Yeast two-hybrid (Y2H) assay

Y2H assay was performed using the MatchMaker yeast two-
hybrid system (Clontech, USA). The coding regions of BnaCPK6L
and BnaPP2Cs were subcloned into pGBKT7 (BD) and pGADT7 (AD)
vectors, respectively. Recombinant plasmids were sequentially
transformed into yeast strain AH109 competent cells as described
in Yeast Protocols Handbook (Clontech). Transformed yeast cells
were titrated on two sets of media, SD-Leucin-Tryptophan (SD-LW),
SD-Leucin-Tryptophan-Histidineþ2.5 mM 30AT (SD-LWHþ3-AT),
and continued to grow at 30 �C for 2e7 d, followed by X-gal staining
before photographed [22].

3. Results and discussion

3.1. Sequence, subcellular localization and expression assays of
rapeseed CPK6L

BnaCPK6L, a homolog of AtCPK6, was cloned by RT-PCR from
rapeseed seedlings. The coding region of BnaCPK6L is 1647 bp in
length with the protein conceptually translated from its cDNA
containing 548 amino acids. The molecular weight of BnaCPK6L is
61.5 kDawith an isoelectric point (pI) of 5.14. BnaCPK6L contains all
the four canonical domains or motifs of CPKs (Fig. 1A). The N-ter-
minal sequence of BnaCPK6L contains putative myristoylation and
palmitoylation modification sites, which are Gly at site 2, Cys at site
5 and Gly at site 7 (Fig. 1A), which are supposed to be necessary and
enough for associationwith membrane system [26]. A phylogenetic
tree was inferred using amino acid sequences of representative
CPKs. It can be seen that BnaCPK6L, together with CPKs from rice,
tobacco, maize, and potato, belongs to Group I (Fig. 1B). To test the
subcellular localization of BnaCPK6L, we fused it with GFP (Green
Fluorescence Protein) and transiently expressed it in leaves of to-
bacco. In parallel, the N-terminal of CBL1 [27] and Arabidopsis
Chalcone Synthase (CHS) gene fused with mCherry were co-
expressed, which were used to indicate plasma and endoplasmic
reticulum (ER), respectively. The results showed that BnaCPK6L-
GFP was predominantly located to the ER membrane, and only a
slight association with PM was observed (Fig. 1C).

Next, we investigated the responses of BnaCPK6L to SA, JA, H2O2

treatments and a fungal pathogen Sclerotina sclerotiorum challenge
by qRT-PCR. The results revealed that expression of BnaCPK6L
increased after SA, H2O2 and S. sclerotiorum treatments compared
to mock treatments. However, JA treatment slightly down-
Yeast cells transformed with indicated plasmid combinations were grown on non-
selective (SD-LW) and selective medium (SD-LWHA) media. Interaction between
Arabidopsis Kþ channel 1(KAT1) and KAT1 was used as a positive control. 10-fold
diluted yeast cell cultures are illustrated by black narrowing triangles. (C) Validation
of PPI in tobacco leaves through bimolecular fluorescence complementation (BiFC)
assay. The coding regions of BnaCPK6L and BnaRBOHs fused to the C- and N-terminal
halves of YFP, respectively were co-expressed in leaf cells. The different plasmid
combinations are indicated at the left side. The fluorescence of YFP was observed 3 d
later on a confocal laser microscope. The left panel is YFP fluorescence, the middle
bright field and the right an overlay of the two images. Scale bar, 75 mm. (D) In vitro
kinase assay of BnaCPK6L phosphorylating BnaRBOHD. GST is used as the control for
substrate. Data shown are the means ± SE of three independent replicates. Different
letters indicate significant differences among reactions (P< 0.05).
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regulated the expression of BnaCPK6L (Fig. 1D).
3.2. Transient expression of BnaCPK6L triggers ROS accumulation
and HR-like cell death

To explore the role of BnaCPK6L, we generated overexpression
plasmids of it for expression in leaves of N.benthamiana plants
under the control of cauliflower mosaic virus 35S (CaMV 35S)
promoter. Moreover, the constitutively active form BnaCPK6LCA
was constructed by substituting six amino acid residues in the
junction domainwith other amino acids, which is expected to act as
a constitutively active kinase [8]. GFP in the same vector was used
as a control (Fig. 2A). Overexpresion of BnaCPK6LCA, but not
BnaCPK6L remarkably induced ROS production in tobacco leaves,
which was reflected by a 3,30-diaminobenzidine (DAB) staining.
Moreover the sites of expressing BnaCPK6LCA showed evident HR-
like cell death, decoloring and drying, compared to BnaCPK6L and
GFP expression sites (Fig. 2B).

We further quantified and compared relative conductivities and
malondialdehyde (MDA) contents. Consistent with expectation, the
relative conductivity of BnaCPK6LCA-expessing leaf tissues was
Fig. 4. Identification and validation of protein-protein interactions (PPI) between BnaCPK6L a
with indicated plasmid combinations were grown on non-selective (SD-LW) and selective
Interaction between T antigen and P53 was used as a positive control, while that of lamin a
black narrowing triangles. (B) Validation of PPI in tobacco leaves through BiFC assay. The co
respectively were co-expressed in leaf cells. The different plasmid combinations are indica
microscope. The left panel is bright field, the 2nd YFP, the 3rd NLS-mCherry and the rightm
significantly higher than that of BnaCPK6L or GFP-expressing tissues
(Fig. 2C). Similarly, the MDA content in leaf tissues expressing
BnaCPK6LCAwas significantly higher than that in BnaCPK6L or GFP-
expression tissues (Fig. 2D).
3.3. Examination of transcript changes of six marker genes related
to ROS production, cell death and defense response

To understand the underlying mechanism of BnaCPK6LCA-
triggerred ROS production and cell death, we used qRT-PCR to
examine the mRNA changes of six marker genes implicated in ROS
production, cell death and defense response. Among those, RBOHA
and RBOHB were previously reported to determine apoplasitc ROS
production [28]. Zinnia Endonuclease 1 (ZEN1) encoding a nuclease
involved in PCD of apical bud meristem [29]. ZAT12 codes for a
C2H2-type zinc finger transcription factor regulating H2O2-induced
gene expression [30]. Pathogenesis-related (PR) 2 and PR5 are two
markers of HR to many pathogens [31]. The results demonstrated
that all the six marker genes are up-regulated upon BnaCPK6LCA
expression, though the amplitude was different at two time points
assayed (Fig. 3A).
nd BnaPP2Cs. (A) Yeast two-hybrid (Y2H)-based analysis of PPI. Yeast cells transformed
medium (SD-LWHþ3-AT) media followed by b-galactosidase assay (X-Gal staining).
nd T antigen as a negative control. 10-fold diluted yeast cell cultures are illustrated by
ding regions of BnaCPK6L and BnaPP2Cs fused to the N- and C-terminal halves of YFP,
ted at the left side. The fluorescence of YFP was observed 3 d later on a confocal laser
ost an overlay of the three images. Scale bar, 50 mm.
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3.4. Identification of interacting BnaRBOHs of BnaCPK6L

Two previous reports have shown that CPK from Arabidopsis
and potato act as important regulators of RBOHs through phos-
phorylation [8,32]. We therefore were curious to know whether
BnaCPK6L had a similar mechanism. To this end, we first used
mbSUS technology to screen the putative substrates of BnaCPK6L,
since RBOHs are well-known membrane proteins. Tobacco RBOHA
and RBOHB are orthologs of RBOHF and RBOHD, respectively in
Arabidopsis [28]. The results showed that BnaCPK6L interacted
strongly with BnaRBOHD, but not with BnaRBOHF or other BnaR-
BOHs such as BnaRBOHC (data not shown); the positive control of
KAT1 also showed an evident interaction with itself (Fig. 3B). Next,
we validated the protein-protein interaction (PPI) by bimolecular
fluorescence complementation (BiFC) technique. BnaCPK6L and
BnaRBOH proteins fused to the C- or N-terminal half of YFP were
co-expressed in tobacco leaves. The results showed that co-
expression of BnaRBOHD and BnaCPK6L reconstructed YFP,
whereas the other combinations including the empty YFPn vector
control did not (Fig. 3C), which is consistent with the mbSUS result.

3.5. BnaCPK6L phosphorylates BnaRBOHD

To test whether BnaCPK6L can phosphorylate BnaRBOHD
in vitro, we performed a luminescence-based kinase assay using
proteins expressed and purified from E.coli. In this luminescence
assay, the amount of ADP formed from ATP after phosphorylation
was measured. GST expressed and purified in parallel was used as a
control. The result showed that BnaCPK6L showed a significant
phoshorylation activity towards BnaRBOHD, but not GST (Fig. 3D).

3.6. BnaCPK6L interacts with three BnaPP2Cs

To identify the antagonizing protein phosphatases that interact
with BnaCPK6L, we used conventional yeast two-hybrid (Y2H)
technique. Eight PP2Cs genes were cloned into pGADT7 vector
containing the coding sequencing of activation domain (AD), while
that of BnaCPK6L into pGBKT7 containing DNA-binding domain
(BD). As shown in Fig. 4A, the positive and negative controls
worked and BnaCPK6L interacted with BnaHAB1, BnaHAB2 and
BnaAHG3, but not with any other BnaPP2Cs, indicating the speci-
ficity of PPI. We further validated the PPI in tobacco using BiFC. The
results showed that BnaCPK6L interacted with BnaHAB1, BnaHAB2
and BnaAHG3 specifically, at different subcellular compartments.
As a control, BnaCPK6L did not show any interaction with BnaHAI3
(Fig. 4B). The results of Y2H and BiFC are identical, supporting the
usefulness of the two techniques in studying a BnaCPK.

In this study, we characterized rapeseed BnaCPK6L and found
that BnaCPK6L positively regulated ROS production and cell death
through interacting with and phosphorylating BnaRBOHD, but not
BnaRBOHF. Further studies could be directed to decipher the roles
of more BnaCPKs in ROS signaling and defense responses.
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