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Abstract: The separation of leaf and wood points is an essential preprocessing step for extracting
many of the parameters of a tree from terrestrial laser scanning data. The multi-scale method and the
optimal scale method are two of the most widely used separation methods. In this study, we extend
the optimal scale method to the multi-optimal-scale method, adaptively selecting multiple optimal
scales for each point in the tree point cloud to increase the distinctiveness of extracted geometric
features. Compared with the optimal scale method, our method achieves higher separation accuracy.
Compared with the multi-scale method, our method achieves more stable separation accuracy with
a limited number of optimal scales. The running time of our method is greatly reduced when the
optimization strategy is applied.

Keywords: multiple optimal scales; leaf and wood separation; terrestrial laser scanning;
machine learning

1. Introduction

Tree characteristics are vital parameters for many environment applications, such as ecosystem
productivity models, carbon dynamic and ecological studies, forest management, and disease
and stress detection [1–5]. Manually obtaining many of these characteristics is a time-consuming
process. Terrestrial laser scanning (TLS) has provided a revolutionary way to quantify individual tree
characteristics, with detail, accuracy, and flexibility that satellite laser scanning and airborne laser
scanning have not been able to match during the past two decades [6–8]. TLS data of an individual tree
can be used to retrieve many tree parameters, including diameter at breast height, leaf area index, plant
biomass, virtual projection, and gap fraction [1,9–11]. Some parameters of a tree, such as tree height,
diameter at breast height, and crown width, can be extracted directly from raw TLS data. Retrieving
other high-level tree parameters from TLS data requires the separation of leaf and wood points to
improve accuracy and reduce complexity [12]. Béland et al. [13] distinguished leaf and wood points in
TLS data before estimating three-dimensional (3D) leaf area distribution. To quantitatively remove the
effects of the woody material in leaf area index estimates, Ma et al. [14] separated the TLS data into
photosynthetic and non-photosynthetic points. Due to the natural heterogeneity and complexity of
tree surfaces, separating leaf and wood points is technologically challenging [7,14–16].

Existing leaf and wood separation methods are either unsupervised or supervised. Unsupervised
separation does not require training samples and the workload of the end users is limited.
Béland et al. [17] used the contact frequency of co-registered TLS points from two or more scanning
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positions to separate leaf and wood points. Hakala et al. [18] designed a separation method that was
based on the radiometric information of different wavelengths of a multi-wavelength laser scanner.
Belton et al. [19] used geometric features and a Gaussian mixture model to cluster the points into leaves,
trunk branches, or unknown. Béland et al. [13] identified an appropriate normalized radiometric
information threshold value and then separated the leaf and wood points. Tao et al. [7] extracted the
skeleton of a tree before separating the leaf and wood points. Li et al. [20] used the difference in the
structures of different components of a tree to separate leaf and wood points [21]. Wang et al. [15]
proposed a robust and dynamic point cloud segmentation routine to separate a tree point cloud into
leaf and wood points. Ferrara et al. [22] introduced an approach that was based on the density-based
spatial clustering of applications with noise. Xu et al. [23] provided an approach that used a bottom-up
hierarchical clustering strategy to combine clusters belonging to non-photosynthetic components,
which could also be used to separate leaf and wood points in a tree point cloud.

The supervised separation methods require the input of training samples and can achieve higher
accuracy and stability than unsupervised methods. Ma et al. [14] used the spatial distribution patterns
of manually selected training points to train a Gaussian mixture model for leaf and wood point
separation. Yun et al. [24] calculated the shape, normal vector distribution, and structure tensor of
tree point cloud and used a support vector machine to separate leaf and wood points. In the above
studies, only geometric features of tree point clouds were used and the radiometric information
was not employed. Compared with the separation methods that employed only geometric features,
methods that integrated radiometric and geometric features achieved better separation accuracy and
robustness [25,26]. However, the radiometric values need an instrument specific radiometric calibration
before they are used to separate leaf and wood points. The instrument specific radiometric calibration
was a challenging process and more detailed studies were still needed for physical interpretation [27,28].
In practice, the geometric feature-based supervised methods were widely used to separate leaf and
wood points for their accuracy, stability, adaptability, and expansibility.

For the geometric feature-based supervised separation method, the separation accuracy depends
on the machine learning methods, selected scales, and geometric features. Wang et al. [16] examined
four machine learning methods and 26 geometric features that were widely used in other separation
tasks [29–33], finding that the random forest method and several geometric features could effectively
separate leaf and wood points in TLS data. To assess the scale effect on the separation accuracy,
Wei et al. [12] extracted the single-scale and multi-scale geometric features from the point clouds of
two Oak trees and showed that the multi-scale geometric features improved the separation accuracy
greatly. However, how to select the appropriate scales to calculate the geometric features was not
discussed, which affected the separation accuracy greatly [14,24,26,31,32].

Three strategies can be used to select the appropriate scales. The first strategy heuristically selects
one fixed scale for all points [14,24]. Although this strategy is simple and fast, it is data dependent.
The second strategy, referred to as the optimal scale method hereafter, finds one optimal scale for each
point [31–35]. The third strategy, referred to as the multi-scale method hereafter, randomly selects
many fixed scales for all points [29,36]. The assumption of this method is that the surface of objects is
heterogeneous and its distinctive properties are seldom defined at one specific scale [29].

In this study, we extend the optimal scale method to use multiple optimal scales, referred
to as the multi-optimal-scale method hereafter. Compared with the optimal scale method, the
multi-optimal-scale method achieves higher separation accuracy. Compared with the multi-scale
method, the multi-optimal-scale method achieves more stable accuracy with a limited number of
optimal scales.

The remainder of this paper is organized as follows. The experimental data are described in
Section 2. In Section 3, the proposed multi-optimal-scale method is explained in detail, together with
a brief description of the optimal scale and multi-scale method. Section 4 presents the experimental
results and discussion of the proposed multi-optimal-scale method. We conclude our paper in Section 5.
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2. Experimental Data

Point clouds of nine trees, including one Erythrophleum fordii tree, one Maidenhair tree, and seven
Oak trees, are used in our study. The Erythrophleum fordii tree was provided by Hackenberg et al. [10] and
used in Wang et al. [15,16]. This data was acquired by a Z+F IMAGER 5010 from eight scan positions
in October 2013 at Baiyun forest farm (106◦45′ E, 26◦06′ N), Guangxi Province, China. The Maidenhair
tree was scanned by Leica ScanStation C10 from one scan position in May 2017 at the University of
Electronic Science and Technology of China (104◦07′ E, 30◦07′ N), Sichuan Province, China. The seven
Oak trees were scanned by Leica ScanStation P40 from four scan positions in April 2016 at Jigong
Mountain National Nature Reserve (114◦02′ E, 31◦50′ N), Henan Province, China. Oak tree 1 and Oak
tree 2 were also used in Wei et al. [12]. The Erythrophleum fordii tree was registered and preprocessed
by Hackenberg et al. [10]. All other trees are preprocessed using the registration and edit modules of
Leica Cyclone (Leica Cyclone 9.1.4, 2016) software. We manually separated the leaf and wood points
of each tree to obtain the reference data to validate the accuracy of the models with the open-source
software CloudCompare (CloudCompare 2.10-alpha, 2018). As this operation is based on the visual
assessment of the tree point cloud, the quantitative evaluation results may be affected by the user
interpretation slightly. In this study, we randomly select 10% of the aforementioned data as core points
to reduce the processing time of our multi-optimal scale method (the details of the core points are shown
in Section 3.4). The number of points, the average point density, the tree height, and the core point of
each tree is listed in Table 1. The manually separated tree point clouds are shown in Figure 1.

Table 1. The details of each tree point cloud.

Trees Leaf Points Wood Points Average Point
Density (mm)

Tree Height
(m) Core Points

Oak tree 1 2,122,328 1,220,188 0.9888 11.1069 334,252

Oak tree 2 7,429,900 4,924,099 0.9418 16.7122 1,235,400

Maidenhair tree 120,530 100,132 1.1586 1.4043 22,066

Oak tree 3 3,933,295 6,378,470 1.1421 24.0598 1,031,177

Oak tree 4 2,097,385 2,154,306 1.1458 11.3181 425,169

Oak tree 5 2,416,849 8,072,313 0.9334 21.6634 1,048,916

Oak tree 6 2,750,571 2,002,032 1.1095 10.9939 475,260

Oak tree 7 3,793,240 2,128,051 0.8768 7.7147 592,129

Erythrophleum
fordii tree 2,061,679 1,806,859 4.9382 21.2738 386,854
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3. Methods.

3.1. Scale Definition and Selection of Multiple Optimal Scales

Let q = (x, y, z) ∈ R3 be a point in the 3D space. Q =
{
qi ∈ R3

∣∣∣ i = 1, . . . , N
}

denotes the tree
point cloud. For being able to describe the local 3D structure of a given point qi via geometric features
and increase the distinctiveness of derived geometric features, the first step of our method was to select
an appropriate scale definition and scale size for individual points. Two scale definitions are commonly
used: Spherical scale and k nearest neighbor scale. The spherical scale requires a suitable radius, which
is different for different tree point clouds [31]. The k nearest neighbor scale requires a parameter k,
which is independent of the tree point clouds [32]. We employed k nearest neighbor scale in this study.
The parameter k is a scale parameter and different values of k correspond to different scales.

Before selecting the scales, we needed to specify the set of candidate scales from which the
selected scales are determined. Two strategies are commonly used to determine the candidate scales.
In the first strategy, the candidate scales form a geometric sequence [34]. In the second strategy,
the candidate scales form an arithmetic sequence [31,32]. The second strategy is simple but slightly
increases computational load compared with the first strategy.

For each point qi in Q, a principal component analysis is applied to its k nearest neighbors [37].
The ordered eigenvalues resulting from the principal component analysis for point qi are λ1, λ2, and
λ3 (λ1 ≤ λ2 ≤ λ3) and used to infer multiple optimal scales of this point. Let αi = λi/(λ1 + λ2 + λ3).
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αi can be considered as the “probability” of a point being labelled as a 3D, 2D, or 1D structure [31].
The measure of the eigen-entropy can be defined via the Shannon entropy equation as

Eα = −(α1 ln(α1) + α2 ln(α2) + α3 ln(α3)) (1)

at the given scale k [38]. Multiple optimal scales can be determined by varying the scale parameter
k within the candidate scales and selecting the scales that yield the first m smallest eigen-entropies,
where m is a user-defined number. In comparison, the optimal scale method chooses the scale that
yields the minimum eigen-entropy, and the multi-scale method just randomly chooses multiple fixed
scales from the candidate scales for all points.

3.2. Features Extraction

We calculated 12 local 3D and 2D geometrical features (Table 2) for a point qi based on its k nearest
neighbors. The 2D geometrical features are calculated from projected points on the XY plane. According
to the experimental results of Wang et al. [16], higher separation accuracy can be achieved when more
geometric features are used. However, when the number of geometric features surpasses a certain
threshold, the improvement in the separation accuracy will reach diminishing returns. In addition,
more computation time and memory are required when more geometric features are used. In related
works, Ma et al. [14] used three geometric features; Yun et al. [24] used nine geometric features;
Zhu et al. [26] used seven radiometric features and six geometric features; Wang et al. [16] used 26
geometric features and Wang et al. [15] used 32 geometric features. The above studies showed that
no more than 10 geometric features are needed to stabilize the separation accuracy in leaf and wood
separation studies [16]. We simply combine the 12 local 3D and 2D geometrical features over multiple
scales for the multi-optimal-scale and the multi-scale methods to train models. Such a combination
method is also used in Brodu et al. [29] and Wang et al. [36].

Table 2. Geometrical features extracted from the tree point cloud. EV3D and EV2D denote the
eigenvalue (sorted in ascend manner) and NV3D is the normal vector.

Feature Description

Linearity3D EV3D3/(EV3D1 + EV3D2 + EV3D3)
Planarity3D EV3D2/(EV3D1 + EV3D2 + EV3D3)

Omnivariance3D (EV3D1 × EV3D2 × EV3D3)1/3

Anisotropy3D (EV3D3 − EV3D1)/EV3D3
Verticality3D NV3Dz

Radius3D Radius of 3D local neighborhood.
Density3D Point density of 3D local neighborhood.

Zdiff3D Height difference of 3D local neighborhood.
StdZ3D Standard deviation of heights of 3D local neighborhood.

Radius2D Radius of 2D local neighborhood.
Density2D Point density of 2D local neighborhood.

Linearity2D EV2D2/(EV2D1 + EV2D2)

3.3. Separation Method

We use the random forest method to separate leaf and wood points in this study, as suggested
in Wang et al. [16] and Weinmann et al. [31]. The random forest is a decision-tree-based ensemble
learning method that was proposed in Breiman [39]. The learned model is a collection of weak models.
Multiple decision trees are grown on random subsets of training data. The class determination is based
on a majority vote fashion. Compared with other methods, it can handle high data dimensionality with
highly correlated features and is fast and insensitive to overfitting. The random forest has three key
parameters: the number of decision trees ntree, the number of input features n f eature used at each node,
and the minimum leaf size mlea f . The model accuracy increases when ntree increases until it reaches
diminishing returns [15,16,26,31–33]. Increasing n f eature improves the performance but may decrease
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the diversity of individual trees. A smaller mlea f makes the model more prone to capturing noise in
training data.

3.4. Optimization Strategy

Compared with the optimal scale method, our proposed multi-optimal-scale method needs to
calculate geometric features at multiple scales, which entails more calculation. To reduce the running
time of our method, two strategies are employed. The first strategy is to compute the geometric
features on a random sub-sampling of the tree point cloud called core points and conduct the separation
of leaf and wood on the core points. Each point of the whole tree is then given the label of the nearest
core point. The second strategy is to use parallel computation to divide the whole computation into
several parts and process them in different central processing units to improve computation speed.
The two strategies are commonly employed to reduce the computation time in the literatures [15,29,33].
We use the Parallel Computing Toolbox of MATLAB R2018b to parallel our method.

3.5. Evaluation

The performances of our multi-optimal-scale method, the multi-scale method, and the optimal
scale method are evaluated using the accuracy statistical index [15,16,26]. The accuracy index is
given by

Accuracy = (Tw + Tl)/(w + l) (2)

where w and l are the number of wood points and leaf points; Tw and Tl are the correctly identified
wood points and leaf points, respectively.

The total running time includes the time used by scale selection, feature extraction, classifier
training, and leaf and wood separation. For the multi-optimal-scale method, the speedup ratio is used
to assess the efficiency of optimization strategy [12]. The speedup ratio of method a over method b is
defined by

Speedup ratio = Tb/Ta (3)

where Ta and Tb are the total running time of the two methods, respectively.

4. Experimental Results and Discussion

Our experiments are conducted on a 64-bit Windows 7 with an Intel(R) Xeon(R) E5-2609 v4 1.7
GHz processor and 32GB RAM. The source code of our method is written in MATLAB programing
language. Our implementation builds on the source code of Weinmann et al. [31,40]. In our experiments,
the candidate scales form an arithmetic sequence. We vary k from 10 to 100, with a step size of 10.
Varying k with a fixed step size to select a series of scales is commonly practiced by researchers [31–34].
In total, we have 10 candidate scales. For our multi-optimal-scale method, the number of optimal
scales is varied from 2 to 10. In total, we have 9 multi-optimal-scale models. It is worth noting that
for any given number of optimal scales, each point may have different sets of optimal scales. For the
multi-scale method, the number of scales is also varied from 2 to 10. For each given number of scales,
we train 50 multi-scale models and obtain the worst, best, and mean accuracy of the 50 models for
each tree. For the random forest classifier, we set ntree = 100, n f eature = sqrt(m), where m denotes the
number of input features, as suggested in Breiman [39]. We set mlea f = 10 to avoid overfitting and
obtain higher separation accuracy. The random forest classifier module of MATLAB is used to conduct
the classification. About 10% of the core points for each tree is selected as training points to train the
models with the simple random sampling method and the remaining core points are used for evaluating
the accuracies.

The experiment results are shown in Table 3 and Figure 2. We observe that the highest accuracy of
the 9 multi-optimal-scale models are greater than that of the optimal scale model by about 1%–3%
for each tree. For example, our method achieves the highest accuracy of 91.81% on the Oak tree
7. In comparison, the optimal scale method achieves an accuracy of 89.04%. The improvement in
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accuracy by our multi-optimal-scale method over the optimal scale method is of a similar size to those
reported in the literature. For example, Weinmann et al. [31] showed that the separation accuracy of
the optimal scale method is higher than the highest separation accuracy of the fixed scale method with
random forest model by about 0.71% in Oakland dataset. For vegetation class, Brodu et al. [29] showed
that the balanced accuracy of the multi-scale method was higher than the highest balanced accuracy
of the fixed scale method with linear discriminant analysis model by about 0.68% in the Otira River
scene. The separation accuracy of our method is more stable than the multi-scale method when the
number of scales is no more than five. The multi-scale method tends to achieve higher accuracy when
the scale number is greater than five. This is probably because our method captures the distinctive
characteristics of leaf and wood points with fewer scales and the multi-scale method tends to get more
distinctive information with more scales.

Table 3. The separation accuracy of the optimal scale method and the highest separation accuracy of
our proposed multi-optimal-scale method for each tree.

Trees Optimal Scale Method Our Method

Oak tree 1 0.8947 0.9133
Oak tree 1 0.8738 0.8923

Maidenhair tree 0.9194 0.9374
Oak tree 3 0.9301 0.9521
Oak tree 4 0.9452 0.9561
Oak tree 5 0.8772 0.8955
Oak tree 6 0.9058 0.9304
Oak tree 7 0.8904 0.9181

Erythrophleum fordii tree 0.9759 0.9820

The separated leaf and wood points of our proposed multi-optimal-scale method with five scales
for each tree are shown in Figure 3. It is worth noting that some small branch sections inside the
canopy are misclassified as leaf points and some leaf points on the canopy surface are wrongfully
labeled as wood points. Nevertheless, based on visual assessment, the overwhelming majority of the
branches inside the canopy are separated from leaves successfully.

While our proposed multi-optimal-scale method only improves the separation accuracy by
about 3% against the optimal scale method, our method greatly increases the separation accuracy
for small branches and might facilitate the extraction of accurate above ground biomass and leaf
area index [6,24,41]. To visually demonstrate the potential of our method in the extraction of the
two high-level tree parameters, we plot the incorrectly separated points of Oak tree 7 of the optimal
scale method and our proposed multi-optimal-scale method with five optimal scales in Figure 4 (the
correctly separated points are not shown). Our method decreases the number of small branch sections
that are misclassified as leaf points and may improve the estimation accuracy of above ground biomass
(red box). Our method increases the number of correctly separated leaf points, which may be helpful
to improve the estimation accuracy of dried leaf area index (blue box).

In Table 4, we list the running times of our multi-optimal-scale method with/without the
optimization described in Section 3.4 when the number of scales is equal to five. In our experiments,
we use 12 cores to accelerate our method. Our method has the highest speedup ratio of 60.04 for the
Oak tree 2 and the lowest speedup ratio of 46.11 for the Maidenhair tree. The mean speedup ratio for
all trees are up to 55.05. Clearly, the optimization greatly reduces the computation load of our method
and makes it more amenable to larger datasets.
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Table 4. The running times of our multi-optimal-scale method with/without the optimization and the
derived speedup ratio for each tree.

Trees With Optimization (s) Without Optimization (s) Speedup Ratio

Oak tree 1 32.72 1714.80 52.41
Oak tree 1 90.37 5425.74 60.04

Maidenhair tree 10.04 462.92 46.11
Oak tree 3 74.41 4431.73 59.56
Oak tree 4 40.95 2244.31 54.81
Oak tree 5 74.98 4494.36 59.94
Oak tree 6 42.63 2224.73 52.18
Oak tree 7 49.75 2760.86 55.50

Erythrophleum fordii tree 36.49 2004.13 54.93



Sensors 2019, 19, 1852 10 of 13Sensors 2019, 19, x FOR PEER REVIEW 10 of 13 

 

 
Figure 4. The incorrectly separated points of the optimal scale method (left) and our proposed multi-
optimal-scale method with five scales (right). The two red boxes show that our proposed multi-
optimal-scale method increases the number of correctly separated wood points. The two blue boxes 
show that our proposed multi-optimal-scale method decreases the number of incorrectly separated 
leaf points. 

In Table 4, we list the running times of our multi-optimal-scale method with/without the 
optimization described in Section 3.4 when the number of scales is equal to five. In our experiments, 
we use 12 cores to accelerate our method. Our method has the highest speedup ratio of 60.04 for the 
Oak tree 2 and the lowest speedup ratio of 46.11 for the Maidenhair tree. The mean speedup ratio for 
all trees are up to 55.05. Clearly, the optimization greatly reduces the computation load of our method 
and makes it more amenable to larger datasets. 

Table 4. The running times of our multi-optimal-scale method with/without the optimization and the 
derived speedup ratio for each tree. 

Trees With Optimization 
(s) 

Without Optimization 
(s) 

Speedup 
Ratio  

Oak tree 1 32.72 1714.80 52.41 
Oak tree 1 90.37 5425.74 60.04 

Maidenhair tree 10.04 462.92 46.11 
Oak tree 3 74.41 4431.73 59.56 
Oak tree 4 40.95 2244.31 54.81 
Oak tree 5 74.98 4494.36 59.94 
Oak tree 6 42.63 2224.73 52.18 
Oak tree 7 49.75 2760.86 55.50 

Erythrophleum fordii tree 36.49 2004.13 54.93 

 
  

Figure 4. The incorrectly separated points of the optimal scale method (left) and our proposed
multi-optimal-scale method with five scales (right). The two red boxes show that our proposed
multi-optimal-scale method increases the number of correctly separated wood points. The two
blue boxes show that our proposed multi-optimal-scale method decreases the number of incorrectly
separated leaf points.

5. Conclusions

In this study, we propose a multi-optimal-scale method to separate leaf and wood points in tree
point clouds. We propose a method to select multiple optimal scales among a series of scales for
each point in the tree point cloud, which increases the distinctiveness of derived geometric features.
The selected 3D and 2D features are extracted at the multiple optimal scales and the random forest
model is used as the classifier to separate the leaf and wood points. Compared with the optimal scale
method, our method achieves higher separation accuracy. Compared with the multi-scale method, our
method achieves more stable accuracy with a limited number of optimal scales. The running time
of our method can be greatly reduced when the optimization is introduced, making it applicable to
large scenes.
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