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Impact of desertification on soil and 
plant nutrient stoichiometry in a 
desert grassland
Hui An1, Zhuangsheng Tang2, saskia Keesstra3,4 & Zhouping Shangguan2

Grassland degradation resulting from desertification often alters the carbon (C), nitrogen (N) and 
phosphorus (P) cycles within grassland ecosystems. To estimate the effects of desertification on 
the C, N, and P concentrations and C:N:P stoichiometry of plants and soil, we examined C, N, and P 
concentrations in plant tissues (leaves, roots and litter) and soil across five degrees of desertification in 
the desert grassland of Ningxia, China (control, light, moderate, severe and very severe desertification 
stages). The C, N, and P concentrations and C:N:P stoichiometry of the leaves, roots and litter differed 
among the different desertification stages. Desertification resulted in opposing trends between the leaf 
N concentration and leaf C:N ratio. With the exception of the very severe desertification stage, the leaf 
N:P ratio decreased over the process of grassland desertification. The soil C, N, and P concentrations 
and soil N:P and C:P ratios decreased significantly along the grassland desertification gradient. In 
contrast, the soil C:N ratio remained relatively stable during desertification (10.85 to 11.48). The 
results indicate that desertification is unfavourable to C and N fixation and has a negative effect on the 
ecosystem structure and function of desert grassland.

Grassland desertification, the primary form of land degradation in northern China, is defined as the degradation 
of grasslands in arid and semiarid regions resulting from various factors, including climate change and human 
activity. Desertification has caused major environmental and socioeconomic problems in many arid and sem-
iarid areas of the world1. It causes soil degradation and severely reduces potential land productivity2–4, which 
causes degradation of the ecosystem and its associated ecosystem services. Therefore, the economic development 
of the region is also under threat. In 2015, the UN adopted the Sustainable Development Goals (SDGs), and 
many of them are connected to soil functions5. This shows the importance of understanding soil quality and the 
processes affecting soil quality for sustainable economic development and topics such as climate change mitiga-
tion, water resource management and biodiversity. In addition, global change studies have increasingly focused 
their attention on desertification in recent years because of its effects on regional and global climate change2,6–9. 
Desertification has been described primarily in terms of its effects on vegetation and soils. Grassland desertifica-
tion is marked by the replacement of native by exotic species. Thus, desertification results in changes in vegetation 
composition, pattern and structure3,10. Soil organic carbon (SOC), nitrogen (N) and phosphorus (P) are often 
observed to decrease with land desertification3,11. However, the impact of desertification on the plant and soil 
C:N:P stoichiometry in desert grasslands remains unknown.

Ecological stoichiometry, which plays vital roles in the study of vegetation composition, ecosystem function-
ing, and nutrient limitation12–14, has greatly improved our understanding of terrestrial ecological dynamics and 
processes. In recent years, several studies have used regional or global-scale patterns in plant stoichiometry to 
predict vegetation composition and dynamics and nutrient limitation15–18. Researchers have also focused on how 
the balance among soil C, N and P concentrations may regulate vegetation patterns19. The soil C:N:P ratio directly 
reflects soil fertility and indirectly indicates plant nutritional status20,21. Changes in soil organic C and total soil N 
and P concentrations inevitably result in variation in nutrient stoichiometric relations22,23. Variation in climatic, 
soil and plant physiological characteristics (i.e., plant growth, metabolism and life history traits) are considered 
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to be the primary factors influencing plant C:N:P stoichiometry24. The variation in plant C:N:P stoichiometry in 
relation to soil N availability was analysed by Méndez and Karlsson25, and they found a significant impact of soil 
N on plant N:P stoichiometry. However, some other studies found that only some nutrient ratios were influenced 
by changes in soil nutrients26, or no relationship was found between soil and plant C:N:P stoichiometry27.

In the biogeochemical cycles of grassland soils affected by desertification, inevitable changes in the C, N and 
P cycles were found as a result of the effects of desertification on soil properties. Most studies have focused on the 
influence of desertification on soil organic C and N2,28,29. However, there is little knowledge regarding the C:N:P 
stoichiometry of plants and soil in relation to grassland desertification. Changes in the soil C:N ratio showed 
opposite trends in the sandy grasslands of Inner Mongolia and the alpine meadow of the Qinghai-Tibetan Plateau 
during desertification2,29. The soil C:N ratio decreased in the sandy grassland of Inner Mongolia during deserti-
fication but increased in the alpine meadow of the Qinghai-Tibetan Plateau. The soil C:N ratio increased during 
the process of desertification due to the resultant reductions in soil organic C and N29.

Ningxia is located in the transitional zone between the arid and semiarid regions of northwest China and 
is surrounded by the Mu Us Desert, the Tengger Desert, and the Ulan Buh Desert. The desertification process 
has been significantly reversed due to the implementation of some ecological engineering measures (i.e., the 
Grain for Green Project and region-wide grazing exclusion)30. However, the harsh natural environmental condi-
tions and low socioeconomic status of the population have led to the development of ecologically fragile sandy 
areas. Therefore, the trend of desertification, officially described as “overall reversal but partial deterioration”, 
still exists31. Changes of vegetation composition, grassland productivity and soil physical and chemical proper-
ties during grassland desertification processes have been described in arid and semiarid regions3,32–34. However, 
studies on the C:N:P stoichiometry of plants and soil during grassland desertification processes are very lacking. 
Previous studies on soil stoichiometry have mainly focused on the C:N ratio in response to the process of grass-
land desertification2,29. Therefore, few studies have focused on the relationships between nutrient contents and 
the stoichiometric ratios of soil and plants. The objective of this study was to determine how plant and soil C, N, 
and P and their stoichiometric ratios vary across grassland desertification stages. Our study addressed the fol-
lowing questions: (1) How do plant nutrient concentrations and stoichiometry change in different plant tissues 
(leaf, litter, root) in different stages of the desertification process? (2) What are the patterns of the soil C, N, and P 
concentrations and C:N:P stoichiometry during the desertification process? (3) What are the relationships of C, 
N, and P concentrations and C:N:P stoichiometry between plant tissues and soil in desert grassland ecosystems?

Results
Soil C, N, and P and stoichiometry response to desertification. Grassland desertification resulted 
in a significant reduction in soil C, N, and P concentrations and the soil N:P and C:P ratios (Table 1, P < 0.05). 
The soil C, N, and P concentrations and N:P and C:P ratios were greater in the potential desertification stage (PD) 
than in the other desertification stages. Along the grassland desertification gradient, the soil C, N and P concen-
trations ranged from 0.23 to 0.08%, 0.023 to 0.006% and 0.041 to 0.036%, respectively. The soil N:P and C:P ratios 
ranged from 0.48 to 0.18 and 6.12 to 1.89 and decreased by 63% and 70% from the PD stage to the VSD stage, 
respectively. In contrast, the soil C:N ratio ranged from 10.85 to 11.48 and did not differ significantly among the 
different desertification stages.

Plant C, N, and P concentration response to desertification. With the exception of leaf C concentra-
tion, grassland desertification had a significant influence on the plant litter and root C concentrations (Fig. 1a–c; 
Table 2, P < 0.05). Plant litter C concentrations were greater in the PD stage than in the other desertification 
stages, but plant root C concentrations were greater in the PD stage than in the LD stage. The plant tissue (leaf, lit-
ter, and root) N and P concentrations were significantly influenced by grassland desertification (Fig. 1d–i; Table 2, 
P < 0.05). The plant leaf N and P concentrations were lower in the PD stage than in the VSD stage. The plant litter 
N and P concentrations were greater in the LD stage than in the other desertification stages. Plant root N and P 
concentrations were lower in the MD stage than in the VSD stage.

Plant C:N:P stoichiometric ratio responses to desertification. Grassland desertification had a sig-
nificant effect on the C:N, N:P, and C:P ratios of the leaf, litter and root (Fig. 2; Table 2, P < 0.05). The C:N and C:P 
ratios of the plant litter and root were lower in the LD stage than in the MD stage, while the N:P ratio was greater 
in the LD stage than in the MD stage. During the desertification process, the plant litter and root N:P ratios 

Desertification stage C (%) N (%) P (%) C:N ratio N:P ratio C:P ratio

PD 0.23 ± 0.01a 0.023 ± 0.002a 0.041 ± 0.001a 11.08 ± 0.07a 0.48 ± 0.07a 6.12 ± 0.20a

LD 0.18 ± 0.02b 0.015 ± 0.001b 0.040 ± 0.001a 11.22 ± 1.89a 0.31 ± 0.08b 4.34 ± 0.31b

MD 0.12 ± 0.03c 0.009 ± 0.001c 0.037 ± 0.001b 10.85 ± 0.04a 0.23 ± 0.04c 2.90 ± 0.39c

SD 0.10 ± 0.02cd 0.006 ± 0.001d 0.037 ± 0.001b 11.48 ± 0.78a 0.16 ± 0.02d 2.51 ± 0.27c

VSD 0.08 ± 0.02d 0.006 ± 0.001d 0.036 ± 0.002b 11.04 ± 0.91a 0.18 ± 0.02d 1.89 ± 0.14d

P <0.05 <0.01 <0.01 NS <0.01 <0.01

Table 1. Effects of desertification on soil C, N, P concentrations and stoichiometric ratios. Soil nutrient concentration 
and stoichiometric ratios were measured in five different desertification stages: potential desertification stage (PD), 
light desertification stage (LD), moderate desertification stage (MD), severe desertification stage (SD), very severe 
desertification stage (VSD). Values represent treatment means ± standard deviation.
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decreased by 25.3% and 45.3%, respectively. The leaf C:N ratio was lower in the VSD stage than in the MD and SD 
stages, while the leaf C:P and N:P ratios were greater in the VSD stage than in the MD and SD stages.

The plant-soil relationships of C, N, and P concentrations and C:N:P stoichiometry. The plant N 
and P concentrations and C:N:P stoichiometry were significantly correlated with the soil C, N, and P concentra-
tions and C:N:P stoichiometry (Fig. 3, P < 0.05). The correlation analysis showed that litter N and P were signifi-
cantly positively correlated with soil C, soil N, soil P, and the soil C:P and soil N:P ratios. Root N was significantly 
positively correlated with soil C, soil N, and the soil C:P and soil N:P ratios. The N:P ratio of the soil and roots 
showed a significant positive correlation with the C:P ratio of the soil and roots and a significant negative corre-
lation with the C:N ratio of the soil and roots. The N:P ratio of the leaves and roots were significantly positively 
correlated with the soil N:P ratio.

Discussion
Effects of desertification on plant C, N, and P concentrations and C:N:P stoichiometry.  
Grassland desertification has a significant influence on plant C, N, and P concentrations and C:N:P stoichiom-
etry. Our results indicated that the leaf N concentration was higher in the VSD stage (mobile sand) than in the 
other desertification stages. These results were consistent with the variation in leaf N along the sandy grassland 
restoration process35. Agriophyllum squarrosum (annual forb) was the dominant plant in the VSD stage (mobile 
sand). Pioneer plant species (A. squarrosum) maintained higher plant N concentrations when growing in mobile 
sand with poor nutrients35. Variations in C, N and P stoichiometric relations were observed among the differ-
ent plant tissues22,36. Leaves tended to have greater N and P concentrations and thus lower C:N and C:P ratios 

Figure 1. Response of C, N and P concentrations of plant tissue (leaf, litter and root) to desertification. Plant 
C, N and P concentrations were measured in five different desertification stages: potential desertification stage 
(PD), light desertification stage (LD), moderate desertification stage (MD), severe desertification stage (SD), 
very severe desertification stage (VSD). Different lowercase letters indicate differences at P < 0.05. Values 
represent treatment means ± standard deviation, n = 3.

Plant tissue % C % N % P C:N ratio C:P ratio N:P ratio

Leaf F = 3.26 F = 94.02** F = 4.38* F = 54.05** F = 5.57* F = 96.96**

Litter F = 13.2** F = 59.82** F = 58.9** F = 47.41** F = 1.24** F = 13.17**

Root F = 5.90* F = 11.94** F = 42.29** F = 17.61** F = 95.81** F = 28.31**

Table 2. ANOVA results comparing carbon (%C), nitrogen (%N), phosphorus (%P), the ratios carbon to 
nitrogen (C:N ratio), nitrogen to phosphorus (N:P), and carbon to phosphorus (C:P) of plant tissue (leaf, litter, 
root) in different desertification stages. The level of significance with *P < 0.05, **P < 0.01.
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than litter and roots across all desertification stages. This revealed that more nutrients are redistributed to the 
aboveground plant tissue parts to support shoot regrowth. The variation in plant C:N:P stoichiometry resulted 
from the changes in different plant tissue C, N, and P concentrations. Furthermore, the C:N:P stoichiometry of 
different plant tissues is linked to the chemical composition of the different plant tissues.

We found that the plants in the PD, LD and VSD stage showed higher leaf N:P levels than those in the MD and SD 
stages. The plant communities in the PD and LD stages are rich with leguminous families and other N2-fixing plants. 
When the plant community changes due to desertification into an A. squarrosum-dominated community, this changes 
the physical properties and available nutrients in the soil, consequently inhibiting plant nutrient absorption and utili-
zation. In addition, the leaf C:P ratio ranged from 205 to 236 during the grassland desertification process. Our findings 
were lower than the presumed leaf C:P threshold (250:1) required for the efficient growth of P-rich herbivores feeding 
on comparably C-rich plants37. The leaf C:N ratio (15.1–24.8) was in agreement with the leaf C:N ratio (17.9) across the 
three grasslands of China18. The leaf C (41.3%), N (2.24%), leaf C:P (222) and N:P (12) ratios in our study were lower 
than those of several species on the Loess Plateau (43.8%, 2.41%, 312, 15.4, respectively), and leaf C:P (232) and N:P 
ratios (12.7) found for global flora37, while leaf P (0.188%) was higher than that of Loess Plateau (0.16%)38. This suggests 
that the lower leaf C:P and N:P ratios compared with the Loess Plateau are likely caused by low leaf C and N, and high 
leaf P. Plant P is generally related to soil P, and the high leaf P may be due to the high soil P content17.

Effects of desertification on soil C, N, and P concentrations and C:N:P stoichiometry. It has 
been demonstrated that grassland desertification changes soil nutrients39–41 and leads to alterations in soil nutri-
ent stoichiometric relations23,40. Along the grassland desertification gradient in our study area, there were signifi-
cant variations in soil nutrients (soil C, N, and P) and C:N:P stoichiometry (soil N:P and C:P ratios), implying an 
influence of grassland desertification on soil nutrients and stoichiometry. These successional changes in the C, N, 
and P concentrations and C:N:P stoichiometry of the soil support the hypothesis that soil nutrient cycles and thus 
plant growth are influenced by grassland desertification. The decreases in soil C, N and P concentrations follow-
ing grassland desertification were similar to those found by Zuo et al.3 in Horqin Sandy Land. The decreasing soil 
N and C from the PD stage to the VSD stage suggests that grassland desertification leads to a loss of soil organic C 
and N. The loss of soil organic C and N demonstrated substantial environmental degradation over the process of 
grassland desertification. The decrease in vegetation coverage and productivity would inevitably cause the loss of 
soil organic C and N with increasing desertification. Grassland desertification induces the release of greenhouse 
gases thereby loss of C and N from the soil into the atmosphere11.

Figure 2. Response of C:N:P stoichiometric ratio of plant tissue (leaf, litter and root) to desertification. Tissue 
nutrient ratio were measured in five different desertification stages: potential desertification stage (PD), light 
desertification stage (LD), moderate desertification stage (MD), severe desertification stage (SD), very severe 
desertification stage (VSD). Different lowercase letters indicate differences at P < 0.05. Values represent 
treatment means ± standard deviation, n = 3.

https://doi.org/10.1038/s41598-019-45927-0


5Scientific RepoRts |          (2019) 9:9422  | https://doi.org/10.1038/s41598-019-45927-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Understanding changes in soil C:N:P stoichiometry following increasing desertification is important for esti-
mating the content of soil nutrients and sustainable development in desert grassland ecosystems. The soil N:P and 
C:P ratios decreased significantly over the process of grassland desertification. The soil C:P (3.6) and N:P (0.3) 
ratios in the desert grassland were lower than the average ratios for China and worldwide23,42. The soil C, N and P 
concentrations only account for 5.7%, 6.3% and 48% of those found by Tian et al.23 in China’s soils (2.46%, 0.19% 
and 0.08%, respectively). The soil N:P ratio and N concentration in this study were lower than those estimated at 
the global42 and regional scale23, which suggests N limitation occurs in desert grasslands. The values we found in 
this study were similar to the soil C:N ratios (11.1) that were found by Yang et al.43 in topsoil of China’s grasslands 
but lower than those estimated by Cleveland and Liptzin42 at the global scale and Tian et al.23 in China. The soil 
C:N ratio was relatively consistent across the different desertification stages. Despite the diversity of soil proper-
ties, structural complexity and spatial heterogeneity, the soil C:N ratio is relatively consistent across various ter-
restrial ecosystem types at the global scale42. The constrained soil C:N ratio is consistent with the stoichiometric 
principles that soil organic matter formation requires N and other nutrients in a relatively fixed ratio with C and 
highlights that soil C and N are tightly coupled in natural ecosystems44.

The plant-soil relationships of C, N, and P concentrations and C:N:P stoichiometry. In natural 
ecosystems, nutrient elements are cycled between the soil and plants22. The strong correlations among C, N and 
P in the soil or in plants have been demonstrated by many studies24,45,46, while few studies have focused on how 
C, N, and P concentrations and C:N:P stoichiometry in soil are related to C, N, and P concentrations and C:N:P 
stoichiometry in plants47,48. There was a significant positive correlation between the soil N:P and leaf N:P ratios in 
desert grasslands, which was consistent with the relationship between soil N:P and leaf N:P ratios in a subtropical 
region49. The relationships between plant and soil stoichiometry are most likely driven by two mechanisms. On 
the one hand, plant nutrients are limited by soil nutrient availability19,50. On the other hand, these relationships 
were confirmed to be affected by nutrient re-translocation between soil and plants. Fife et al.51 found a similar 

Figure 3. Correlation matrix among nutrient and stoichiometry of plant leaf, root, litter and soil. N = 10. Note: 
‘×’ indicates correlation is non-significant (P > 0.05); blue indicates positive correlations and red indicates 
negative. C, carbon (%); N, nitrogen (%); P, phosphorus (%); C:N, the ratio of carbon to nitrogen; N:P, the ratio 
of nitrogen to phosphorus; C:P, the ratio of carbon to phosphorus.
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re-translocation pattern for leaf N and P among different plant species. Soil nutrient stoichiometry is tightly 
linked with plant nutrient stoichiometry in the semiarid grassland ecosystem. The N:P ratio of the plant tissue 
(leaves and roots) and soil were positively correlated with the C:P ratio of the plant tissue (leaves and roots) and 
soil and negatively correlated with the C:N ratio of the plant tissue (leaves and roots) and soil, which is consistent 
with the results from a previous study by Bell et al.52 in a semiarid grassland ecosystem. Soil and leaf C:N ratios 
were positively correlated with the soil and leaf C:P ratios52. Our results suggest that nutrient concentrations and 
stoichiometry in soil and plants are tightly linked in desert grasslands. The decline in plant nutrients is also asso-
ciated with soil nutrient loss from the grassland ecosystem over the process of desertification.

Materials and Methods
Study site. The study site was located in Yanchi County, Ningxia, China (37°04′-38°10′N and 106°30′-
107°41′E, elevation approximately 1450 m), which is located at the southwestern margin of the Mu Us Desert. 
This region has a temperate and semiarid climate. The annual precipitation is 280 mm, with approximately 70% 
occurring during the June to September period. The annual potential pan evaporation is approximately 2710 mm, 
which is equivalent to more than nine times the annual precipitation. The annual temperature (MAT) is 8.1 °C, 
with monthly temperatures ranging from −8.7 °C to 22.4 °C. The annual wind speed is 2.8 m·s−1, and the pre-
vailing winds are mainly northwest in April and May. Wind erosion often occurs from April to mid-June before 
the rainy season starts53. At the study site, the main soil types are arenosols of quartisamment, which is barren 
with a loose structure and vulnerable to wind erosion34,54. The vegetation is dominated by Agriophyllum squarro-
sum, Salsola collina, Corispermum hyssopifolium, Artemisia scoparia, Pennisetum centrasiaticum, Aneurolepidium 
dasystachys, Cleistogenes gracilis, and Lespedeza potaninii.

Desertification degree. There are many criteria for assessing the degree of grassland desertification55,56. In 
terms of the types and degrees of grassland desertification offered by Li et al.56 and our investigation, five types of 
grassland in different desertification stages can be identified: (i) potential, (ii) light, (iii) moderate, (iv) severe and 
(v) very severe desertification. Overgrazing is one of the primary causes of grassland degradation with different 
desertification degrees. A space-for-time approach was used in selecting experiment sites, and the five desertifica-
tion stages were represented by the existing grassland stands. The potential desertification stage (PD, regarded as 
control) is non-degraded grassland, with a vegetation cover of more than 70%. The light desertification stage (LD) 
is characterized by fixed sand. Mobile sand composes from 1 to 2% of the total grassland area, and vegetation 
cover covers from 50 to 70%. The moderate desertification stage (MD) is characterized by semi-fixed sand. Mobile 
sand occupies approximately 5–20% of the grassland area, and vegetation cover composes from 30 to 50%. The 
severe desertification stage (SD) is characterized by semi-shifting sand dunes. Mobile sand accounts for 20–50% 
of the grassland area, and vegetation cover is between 10 and 30%. The very severe desertification stage (VSD) is 
characterized by shifting sand dunes, mobile sand occupies more than 50% of the total area, and vegetation cover 
is reduced to less than 10%. The original condition of these desertified sites was entirely grassland with similar 
topography and soil type. Therefore, the sites representing the five desertification stages only represented different 
desertification degrees and were otherwise comparable to one another.

Vegetation and soil sampling. Fifteen sites (50 m × 50 m) with similar topography representing the five 
different desertification stages were established in August 2013. Ten randomly placed quadrats (1 × 1 m2) were 
established for vegetation sampling at each site. In each quadrat, vegetation was harvested according to species 
at ground level, and residual standing litter was hand sorted and added to the raked litter. The harvested plants 
from each quadrat were separated into stems and leaves and then oven dried at 70 °C for 48 h to a constant weight. 
Within each quadrat, litter (vegetation produced in previous years) was first removed from the quadrats by hand 
raking and retaining. Fine, fragmented and partially decomposed litter (humus) lying on the soil surface was not 
included since it was mixed with mineral soil and could not be separated. Within each quadrat, roots were col-
lected at 0–40 cm in three soil cores (diameter 9 cm). In the laboratory, the soil was washed away from the roots, 
and then the roots were oven dried at 70 °C for 48 h.

In every quadrat, three soil samples were collected from 0–20 cm depths by taking soil cores, which were then 
mixed into one compound sample. Each soil sample was sieved through a 2 mm mesh. The leaf, litter, root and soil 
samples from two quadrats were combined, which created five replicate samples for each plot. The leaf, litter, root 
and soil samples were ground to homogeneity with a ball mill for C, N and P measurements.

Sample analysis. The concentrations of C, N, and P (percentage dry mass, %) were determined for all plant 
tissue samples. Analysis of C and N concentrations was performed on an elemental analyser (multi N/C 3100 
TOC, Germany). The tissue P concentration was determined by the molybdenum blue colorimetric method 
with a UV/visible spectrophotometer (UV-2450/2550, Japan). Soil P determination followed the same basic 
methods as plant tissue analyses. The soil organic C concentration was analysed by the Walkley-Black modi-
fied acid-dichromate FeSO4 titration method57, and the soil N concentration was determined using the Kjeldahl 
acid-digestion method. Soil and plant C, N, and P concentrations were expressed on a dry weight basis. C:N:P 
stoichiometry of the plant tissue and soil was calculated on a mass basis.

Statistical analysis. One-way analysis of variance (ANOVA) was used to determine the differences in nutri-
ents and stoichiometry of the plants and soil among the different desertification stages. Homogeneity of variance 
and least significant difference (LSD) tests were conducted following the ANOVA to determine the significance 
of the differences among treatments at P < 0.05. Analysis of variance (ANOVA) was performed using SPSS soft-
ware (SPSS Inc., USA). Pearson correlations were calculated to determine how the nutrients and stoichiometry 
of the plants and soil components were correlated during grassland desertification; this correlation analysis was 
conducted with the “cor6plot” package in R version 3.2.4 (R Core Team 2016).
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Data Availability
The dataset generated during the current study is available from the corresponding author on reasonable request.
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