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ABSTRACT
Background. Long-term fertilisation has a large influence on soil physical and chemical
properties in agro-ecosystems. The effects on the distribution of aggregates, however,
are not fully understood. We determined the dynamic change of the distribution
of aggregates and soil organic carbon (SOC) content over time in a long-term field
experiment established in 1998 on the Loess Plateau of China and illustrated the
relationship between them.
Methods. We determined SOC content and the distribution of aggregates in nine
fertiliser treatments: manure (M); nitrogen (N); phosphorus (P); M and N; M, N, and
P; M and P; N and P; bare land; and an unfertilised control. These parameters were
then used for a path analysis and to analyse the fractal dimension (Dv).
Results. The organic fertiliser increased SOC content. The proportions of 0.1–0.25 mm
microaggregates and 0.25–0.5 mmmacroaggregates were higher and the proportion of
the 0.01–0.05 mm size class of the silt + clay fraction was lower in the treatments
receiving organic fertiliser (M, MN, MNP, andMP) than that in the control, indicating
that the addition of organic fertiliser promoted aggregation. The distribution of
aggregates characterised by their fractal dimension (Dv), however, did not differ among
the treatments.
Discussion. Dv was strongly correlated with the proportion of the <0.002 mm size
class of the silt + clay fraction that did not differ significantly among the treatments.
The change in the distribution of aggregates was strongly correlated with SOC content,
which could produce organic polymer binding agents to increase the proportion of
larger particles. Long-term application of organic fertiliser is thus necessary for the
improvement and maintenance of soil quality in semi-arid agricultural land when
residues are removed.

Subjects Environmental Sciences, Soil Science
Keywords Long-term fertilization, Path analysis, Aggregate, Volume fractal dimension, The loess
Plateau

How to cite this article Zhang et al. (2018), Effects of long-term fertilisation on aggregates and dynamics of soil organic carbon in a semi-
arid agro-ecosystem in China. PeerJ 6:e4758; DOI 10.7717/peerj.4758

https://peerj.com
mailto:gbliu@ms.iswc.ac.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.4758
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.4758


INTRODUCTION
Soil organic carbon (SOC) is important for the long-term sustainability of agro-ecosystems
and the environment, because it promotes aggregation, improves soil physical properties
and water retention, and increases productivity and the activity of soil organisms (Paradelo,
Virto & Chenu, 2015; Haynes & Naidu, 1998). Restoration of SOC content in agricultural
soil represents a sink for atmospheric CO2, which has the potential to mitigate the effects of
global emissions of greenhouse gases (Brar et al., 2013; Yang et al., 2003). SOC content in
agriculture can be improved by the adoption of suitable management practices. Rudrappa
et al. (2006) and Jaiarree et al. (2014) reported that a balanced application of mineral and
organic fertilisers contributed to the increase and maintenance of SOC content in arable
land.

The distribution and stability of soil aggregates are important indicators of soil physical
quality, highlighting the importance of soil management on particle aggregation and
disaggregation (Silva et al., 2014). Aggregate stability is generally strongly correlated with
SOC content, because the cohesion of aggregates is promoted mainly by organic polymer
binding agents (Haynes & Swift, 1990; Majumder, Ruehlmann & Kuzyakov, 2010) and by
the physical trapping of particles by fine roots and fungal hyphae (Helfrich et al., 2015;
Chenu, Le Bissonnais & Arrouays, 2000). Sequestration of SOC is mainly attributed to
microaggregates (0.05–0.25 mm), because they are stabilised by persistent binding agents
(>0.25 mm), and macroaggregates are stabilised by transient binding agents (Lugato et al.,
2010; Yu et al., 2012).

The long-term application of organic fertiliser often increases SOC content (Yu et al.,
2012; Saha, Kukal & Bawa, 2014) and the proportion of macroaggregates (Huang et al.,
2010;Whalen, Hu & Liu, 2003). Reports of the effect of organic fertiliser on the distribution
of microaggregates, however, have been inconsistent. Yu et al. (2012) and Tripathi et al.
(2014) found that the application of organic fertiliser, compost and farmyard manure,
respectively, significantly reduced the proportion of microaggregates. Interestingly,
some studies have reported that organic fertiliser had no significant influence on the
microaggregates relative to an unfertilised control (Chen et al., 2010; Liu et al., 2013).
These different effects of organic fertiliser on the distribution of microaggregates may be
attributed to the specific soil characteristics and climatic conditions (Yu et al., 2012) and to
the large range of size fractions of aggregate distribution determined by the classical wet-
sieving method. Few studies have subdivided the microaggregates (<0.25 mm) into smaller
size fractions, which impeded a deep understanding of the changes of microaggregates in
response to fertilisation.

The analysis of soil-particle distribution by laser diffraction is now commonly
used (Ryzak & Bieganowski, 2011; Xiao et al., 2014) and allows the categorisation of
microaggregates into smaller size classes and provides detailed volume information for each
size class. Fractal theory is an effective tool for describing complex and irregular geometry
(Mandelbrot, 1983). Various soils have different particle compositions with irregular shapes
and self-similar structures and have fractal characteristics (Tyler & Wheatcraft, 1989). Tyler
& Wheatcraft (1992) proposed the weight fractal dimension (Dm) for studying the fractal
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characteristics of soil structures. The calculation of Dm, however, assumes that particles of
different sizes have the same density, but this assumption has been challenged by Martín
& Montero (2002). This model was later developed for the volume fractal dimension (Dv)
based on laser diffraction to characterise soil-particle and aggregate distribution (Chen &
Zhou, 2013; Wang, Zhou & Zhao, 2005). Xiao et al. (2014) and Zhao et al. (2006) reported
that Dv well described the changes in the stability of soil aggregates and in soil structure
associated with vegetative succession.

Long-term experiments can provide more realistic scenarios for observing changes in
soil properties and processes (Celik et al., 2010) and are thus suitable for studying the
effect of fertilisation on soil quality. Some studies have determined the effect of long-term
fertilisation on soil aggregates, but few studies have determined the dynamic changes of
soil quality and structure for longer than 10 years. This study therefore determined SOC
content and the distribution of soil aggregates of fields on the Loess Plateau in China that
had been fertilised for 15 years to demonstrate the long-term trend of SOC content and
fractal dimension. We hypothesised that the long-term application of organic or mineral
fertilisers could significantly influence SOC content and the distribution of soil aggregates
over time. The specific objectives were thus: (1) to observe the effect of fertilisation on SOC
content, aggregate distribution, and Dv and illustrate the relationship between them, and
(2) to describe the dynamic changes in SOC content and Dv over 15 years.

MATERIALS & METHODS
Experimental site
This study was part of an on-going long-term field fertilisation experiment established in
1998 at the Ansai National Field Scientific Observation and Research Station for Farmland
Ecosystems, Shaanxi province, China (36◦51′30′′N, 109◦19′23′′E). The station is at an
altitude of 1,068–1,309 m a.s.l. and has a temperate semi-arid climate with a mean annual
temperature of 8.8 ◦C and a mean annual rainfall of 500 mm. The soil is a Huangmian soil,
which is classified as a Calcic Cambisol (FAO/UNESCO/ISRIC, 1988), originating from
wind-deposited loessial parental material and characterised by yellow particles, an absence
of bedding, a silty texture, looseness, macroporosity, and wetness-induced collapsibility
(Zhu et al., 2010). The basic soil characteristics to a depth of 20 cm were: organic-matter
content of 15.54 g kg−1, total nitrogen (N) content of 0.57 g kg−1, total phosphorus (P)
content of 0.63 g kg−1, available N content of 28.99 mg kg−1, available P content of 2.49
mg kg−1, available potassium (K) content of 84.86 mg kg−1, pH 8.6, and bulk density of
1.5 g cm−3.

Sampling and processing
The long-term experiment had a triplicate randomised complete block design with an area
of 14 m2 for each plot. Each block contained nine treatments: manure (M), N, P, M and N
(MN), M, N, and P (NMP), M and P (MP), N and P (NP), unfertilised bare land (BL), and
an unfertilised control (CK) (Fig. 1). BL had not been sown or fertilised, and CK was sown
but not fertilised. N was added as urea, P was added as superphosphate, and the farmyard
manure consisted of the faeces and urine from domestic sheep. The contents of organic
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Figure 1 Scheme showing the experimental area with various fertiliser treatments.Note: Mineral fer-
tilizers were nitrogen (N) and phosphorus (P), organic fertilizer was farmyard manure (M). Treatments
were mineral fertilizers, organic manure, different combinations of mineral fertilizers and organic manure,
unfertilized bare land (BL) and an unfertilized control (CK).

Full-size DOI: 10.7717/peerj.4758/fig-1

matter, N, and P in the faeces were 25.7, 0.75, and 0.54%, respectively. The contents of N
and P in the urine were 1.4 and 0.45%, respectively. The amounts of the fertilisers applied
in the treatments are presented in Table 1. P, M, and 20% of the N were applied together
as seed fertilisers, and the remaining 80% of the N was top-dressed between the large-bell
and tasselling stages. The experiment had a three-year rotation, with a sequence of Glycine
max-Zea mays-Z. mays, beginning with G. max in the autumn of 1998. The last crops of Z.
mays (cv. QiangSheng 101) were seeded on 29 April 2012 at a rate of 52.5 kg ha−1, and the
plant density was about 51,000 plants ha−1. The crops were manually harvested, and the
aboveground residues were removed in October.

Sampling
The soil was sampled annually in October from 1998 to 2012 to a depth of 20 cm. Three
replicate soil samples were randomly excavated in each plot using a soil drill (diameter,
4 cm) and then mixed to produce a composite sample. The samples for 1998–2012 were
used for the analysis of changes over time. The samples for 1998–2011 (126 samples) had
been stored in the station’s soil library and were collected from one of the three replicate
treatment plots. The samples for 2012 (27 samples) were used to examine the effects of
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Table 1 The amounts of fertilisers applied in long-term experiment (kg ha−1).

Treatments Organic manure N fertiliser P fertiliser

BL 0 0 0
CK 0 0 0
M 7,500 0 0
MN 7,500 211.95 0
MNP 7,500 211.95 166.65
MP 7,500 0 166.65
N 0 211.95 0
NP 0 211.95 166.65
P 0 0 166.65

Notes.
N was added as urea, P as superphosphate, and the farmyard manure contained the feces and urine from domestic sheep. BL
represents bare land (no plants nor fertilisers) and CK represents unfertilised control. Contents of organic matter, N and P in
feces were 25.7, 0.75, and 0.54% respectively. Contents of N and P in urine were 1.4 and 0.45% respectively.

fertilisation on aggregate distribution, Dv, and SOC content. Visible plant residues were
removed, and the samples were manually broken into fragments <10 mm and air-dried
at room temperature. Each sample was passed through a 1-mm sieve for determining the
distribution of the aggregates, and a subsample was then ground to pass through a 0.25-mm
sieve for the determination of total SOC content.

Determination of aggregate distribution
The soil samples were soaked in distilled water for 24 h and mechanically dispersed by
ultrasonication for 5 min (Xiao et al., 2014). The samples were analysed with a Longbench
Mastersizer 2000 (Malvern Instruments, Malvern, England).

Determination of SOC content
SOC content was determined by Walkley and Black dichromate oxidation (Nelson &
Sommers, 1982).

Dv of aggregates
Dv was calculated as:

V (r <Ri)
VT

=

(
Ri

Rmax

)3−Dv

(1)

where r is the particle diameter, Ri is the diameter of size class i,V (r<Ri) is the total volume
of particles with diameters <Ri, VT is the total volume of particles, Rmax is the maximal
particle diameter, and Dv is the volume fractal dimension. Logarithms were derived for
both sides of the equation, and Dv was obtained from the slopes of the double-logarithmic
curves that fit the data.

Path analysis
Path analysis is a supplement and extension of regression analysis that partitions simple
correlation coefficients into direct and indirect effects through definite path coefficients
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among the variables and distinguishes between correlation and causation (Bai et al., 2014;
Wright, 1934; Zhang et al., 2005).

The aggregates were categorised into nine size classes: <0.002, 0.002–0.005, 0.005–0.01,
0.01–0.05, 0.05–0.1, 0.1–0.2, 0.2–0.25, 0.25–0.5, and 0.5–1 mm. These nine size classes
were categorised into three fractions: macroaggregates (0.25–1 mm), microaggregates
(0.05–0.25 mm), and a silt + clay fraction (<0.05 mm). Backward-stepwise regression was
used to identify the size class that explained most of the variation in Dv , with criteria for
the stepwise regression of probability-of-F-to-enter≤0.05 and probability-of-F-to remove
≥0.10. The size classes that did not significantly contribute toDv at P = 0.10 were therefore
not included in the regression model.

Path diagrams were used to evaluate the relationships between eight selected size classes
and Dv (Fig. 2). The direct effects of the aggregates on Dv are represented by single-headed
arrows, and the coefficients of the correlations between the size classes are represented by
double-headed arrows. The direct effects are termed path coefficients and are standardised
partial regression coefficients in the multiple linear regression of aggregates on Dv (Basta,
Pantone & Tabatabai, 1993). The indirect effects are determined from the product of the
simple correlation coefficient between aggregate size classes and the path coefficient. The
results of the path analysis were determined from the equations (Williams, Demment &
Jones, 1990):

r19= P19+ r12P29+ r13P39+ r14P49+ r15P59+ r16P69+ r17P79+ r18P89 (2)

r29= r12P19+P29+ r23P39+ r24P49+ r25P59+ r26P69+ r27P79+ r28P89 (3)

r39= r13P19+ r23P29+P39+ r34P49+ r35P59+ r36P69+ r37P79+ r38P89 (4)

r49= r14P19+ r24P29+ r34P39+P49+ r45P59+ r46P69+ r47P79+ r48P89 (5)

r59= r15P19+ r25P29+ r35P39+ r45P59+P59+ r56P69+ r57P79+ r58P89 (6)

r69= r16P19+ r26P29+ r36P39+ r46P49+ r56P59+P69+ r67P79+ r68P89 (7)

r79= r17P19+ r27P29+ r37P39+ r47P49+ r57P59+ r67P69+P79+ r78P89 (8)

r89= r18P89+ r28P29+ r38P39+ r48P49+ r58P59+ r68P69+ r78P79+P89 (9)

where rij is the simple correlation coefficient between aggregate size class and Dv , Pij is
the path coefficient between aggregate size class and Dv (direct effects), and rijPij is the
indirect effect of aggregate size class onDv . Subscript designations 1–9 represent the <0.002,
0.002–0.005, 0.005–0.01, 0.05–0.1, 0.1–0.2, 0.2–0.25, 0.25–0.5, 0.5–1 mm aggregates and
Dv , respectively.

The residual, U, is an unmeasured variable in the path model that represents the
unexplained part of an observed variable and is calculated as (Ige, Akinremi & Flaten, 2007):

U =
√
1−R2 (10)

where R2 is the coefficient of determination of the multiple regression model between
aggregate size classes and Dv .
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Figure 2 Path analysis diagram for the relationships between fractal dimension andmicro-aggregate
fractions.Note: Direct path coefficients (Pij) of micro-aggregate fractions are presented by single-headed
arrows while simple correlation coefficients (rij) between variables are represented by double-headed ar-
rows. Subscript designations of 1–9 are <0.002, 0.002–0.005, 0.005–0.01, 0.05–0.1, 0.1–0.2, 0.2–0.25, 0.25–
0.5, 0.5–1 mmmicro-aggregates, and fractal dimension (Dv), respectively.

Full-size DOI: 10.7717/peerj.4758/fig-2

The coefficient of determination for each factor denotes the degree of relative
determination between cause and effect, which can be determined by (Bai et al., 2014;
Chen et al., 2014):

Dyxixj = (Pyi)2, (i= j); Dyxixj = 2Pyi×Pyj× rij, (i,j = 1,2,...,n,i< j) (11)

where Dyxixj is the coefficient of determination, and y is Dv .

Statistical analyses
One-way analyses of variation tested the differences between the various fertilisation
treatments. Pearson correlation coefficients were calculated to analyse the relationships
among aggregates, Dv , and SOC content. Duncan tests separated the means of these
variables at P < 0.05. All statistical analyses were conducted using the R statistical package
(version 3.1.0) (R Core Team, 2014).

RESULTS
Effects of fertilisation treatments on SOC content, aggregate
distribution, and Dv
SOC content was significantly higher in the treatments receiving organic fertiliser (M, MN,
MP, and MNP) than in the treatments receiving mineral fertiliser (N, NP, and P) or in BL
or CK. SOC content did not differ significantly among BL, CK, N, NP, and P. The 0.01–0.05
size class of the silt+ clay fraction and 0.05–0.1 mmmicroaggregates represented >50% of
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the total soil aggregates (Table 2). The proportion of the 0.01–0.05 mm size class of the silt
+ clay fraction was the lowest in M, and the proportion of 0.1–0.25 mm microaggregates
was significantly higher in M than CK. The proportion of 0.25–0.5 mm macroaggregates
was significantly higher in the treatments receiving organic fertiliser (M, MN, MNP, and
MP) than CK. In contrast, the distribution of aggregates in the treatments receivingmineral
fertilisers (N, NP, and P) and BL did not differ significantly from that in CK. Dv did not
differ significantly among the nine treatments.

Correlations among aggregates, Dv , and SOC content
The proportions of all size classes of the silt + clay fraction were positively correlated with
each other, except between the 0.01–0.05 mm and <0.002 mm and 0.005–0.01 mm size
classes, and were negatively correlated with the proportions of micro- and macroaggregates
(0.05–1 mm), except between the 0.2–0.25 and 0.002–0.005 and 0.01–0.05 mm size classes
(Table 3). The proportion of 0.05–0.1 mm microaggregates was positively correlated with
the proportions of 0.1–0.2 mm microaggregates and macroaggregates (0.25–1 mm), the
proportion of 0.1–0.2 mm microaggregates was positively correlated with the proportion
of macroaggregates, and the proportion of 0.25–0.5 mm macroaggregates was positively
correlated with the proportion of 0.5–1 mmmacroaggregates. Dv was correlated positively
with the proportion of the <0.01 mm size class of the silt + clay fraction and negatively
with the proportions of the 0.01–0.05 mm size class of the silt+ clay fraction and 0.2–0.25
mm microaggregates. SOC content was correlated negatively with the proportion of the
<0.05 mm size class of the silt+ clay fraction and positively with the proportions of micro-
and macroaggregates (0.05–1 mm).

Path analysis for aggregates and Dv
A U (uncorrected residue) of 0.054 and an R2 of 0.997 indicated a small unexplained
part of the observed variable in the path model, and the path analysis explained 99.7% of
the variability associated with Dv (Table 4). The path coefficients (underlined in Table 4)
indicated that all selected aggregate classes had significant direct effects on Dv (P < 0.01).
The magnitude of the path coefficients indicated that silt + clay fraction (<0.002 mm)
(P19 = 0.887) was the most important causal factor in predicting Dv , followed by the
0.002–0.005 mm size class of the silt + clay fraction (P29 = 0.368). The direct effect of
the <0.002 mm size class of the silt + clay fraction (0.724) on Dv was larger than its total
indirect effects (−0.132), and the direct and total indirect effects of the 0.002–0.005 mm
size class of the silt + clay fraction on Dv were comparable (0.368 and 0.277, respectively).
The total indirect effects of the 0.005–0.01 mm size class of the silt + clay fraction (0.586)
on Dv , however, were larger than the direct effects (0.055). The indirect effects of the
0.002–0.01 mm size classes of the silt+ clay fraction on Dv due to the <0.002 mm size class
were large (r12P19= 0.749 and r13P19= 0.732).

The <0.002 mm size class of the silt + clay fraction had the highest coefficient of
determination (Dyx1x1 = 0.787), followed by correlations between the <0.002 mm size
class of the silt + clay fraction and 0.25–0.5 mm macroaggregates (Dyx1x7= 0.674), the
<0.002 and 0.002–0.005 mm size classes of the silt + clay fraction (Dyx1x2= 0.653), and
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Table 2 Effects of fertilizer treatments on aggregates, fractal dimension (Dv ) and soil organic carbon content (SOC).

Treatments < 0.002
mm

0.002–0.005
mm

0.005–0.01
mm

0.01–0.02
mm

0.02–0.05
mm

0.05–0.1
mm

0.1–0.2
mm

0.2–0.25
mm

0.25–0.5
mm

0.5–1
mm

Dv SOC
(%)

BL 4.13± 0.29 6.11± 0.55 7.1± 0.56 10.17± 0.69ab 33.91± 0.54ab 27.46± 1.11ab 7.46± 0.65bcd 0.37± 0.07bc 2.14± 0.37ab 1.14± 0.37 2.736± 0.00 0.58± 0.05d

CK 4.42± 0.01 6.44± 0.14 7.31± 0.21 10.52± 0.25ab 34.90± 0.84a 27.04± 0.77ab 7.08± 0.13cd 0.38± 0.07bc 1.36± 0.52b 0.56± 0.28 2.736± 0.00 0.65± 0.03cd

M 4.00± 0.3 5.97± 0.59 6.93± 0.47 9.73± 0.37b 32.74± 0.94c 27.87± 1.32ab 8.79± 0.25a 0.81± 0.31a 2.31± 0.21a 0.87± 0.16 2.735± 0.01 0.97± 0.08a

MN 4.09± 0.39 6.05± 0.71 7.10± 0.61 10.27± 0.6ab 33.92± 0.24ab 26.93± 0.91ab 7.76± 0.39bc 0.58± 0.05abc 2.23± 0.57a 1.05± 0.47 2.735± 0.01 0.90± 0.01ab

MNP 4.00± 0.15 5.94± 0.33 6.95± 0.24 9.96± 0.15b 33.74± 0.59bc 27.3± 0.36ab 7.99± 0.15ab 0.67± 0.2ab 2.39± 0.46a 1.05± 0.12 2.734± 0.01 0.87± 0.03b

MP 3.99± 0.16 5.93± 0.31 6.95± 0.43 10.00± 0.63b 33.62± 0.31bc 27.19± 0.85ab 8.03± 0.29ab 0.70± 0.24ab 2.41± 0.45a 1.18± 0.59 2.734± 0.00 0.93± 0.06ab

N 4.08± 0.43 5.97± 0.79 7.03± 0.66 10.26± 0.55ab 34.58± 0.23ab 27.61± 0.89ab 7.33± 0.48bcd 0.30± 0.16c 1.90± 0.44ab 0.94± 0.27 2.732± 0.01 0.63± 0.04cd

NP 4.30± 0.18 6.43± 0.36 7.7± 0.63 11.23± 1.05a 34.59± 0.56ab 26.22± 1.11b 6.82± 0.81d 0.30± 0.19c 1.70± 0.37ab 0.71± 0.27 2.735± 0.00 0.67± 0.05c

P 4.03± 0.25 5.9± 0.47 6.81± 0.41 9.71± 0.33b 33.99± 0.29ab 28.45± 0.47a 8.13± 0.41ab 0.43± 0.13bc 1.82± 0.56ab 0.72± 0.38 2.732± 0.01 0.67± 0.02c

F value 0.906 0.509 0.856 1.963 3.966* 1.409 5.456* 3.372* 1.907 1.123 0.279 32.983*

CV (%) 3.42 3.25 3.54 4.30 1.78 2.16 7.39 35.43 16.62 22.08 0.05 18.64

Notes.
*significant at P < 0.01.
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Table 3 Correlations relationship of aggregates, fractal dimension (Dv ) and soil organic carbon content (SOC).

Fractions Silt and clay fraction Microaggregates Macroaggregates Dv SOC
(%)

Particle size <0.002
mm

0.002–0.005
mm

0.005–0.01
mm

0.01–0.02
mm

0.02–0.05
mm

0.05–0.1
mm

0.1–0.2
mm

0.2–0.25
mm

0.25–0.5
mm

0.5–1
mm

;<0.002 mm 1
;0.002–0.005 mm 0.844** 1
;0.005–0.01 mm 0.826** 0.834** 1
;0.01–0.02 mm 0.529** 0.597** 0.701** 1
;0.02–0.05 mm 0.075 0.235** 0.020 0.624** 1
;0.05–0.1 mm −0.421** −0.657** −0.478** −0.803** −0.732** 1
;0.1–0.2 mm −0.353** −0.520** −0.313** −0.748** −0.865** 0.881** 1
;0.2–0.25 mm −0.266** −0.080 −0.220** −0.080 0.138 −0.263** 0.075 1
;0.25–0.5 mm −0.439** −0.358** −0.416** −0.503** −0.446** 0.185* 0.237** 0.129 1
;0.5–1 mm −0.474** −0.454** −0.423** −0.589** −0.584** 0.396** 0.413** −0.064 0.861** 1
;Dv 0.756** 0.646** 0.623** 0.051 −0.467** −0.106 0.055 −0.203* 0.165* 0.142 1
;SOC (%) −0.244** −0.177* −0.155 −0.358** −0.434** 0.207* 0.490** 0.500** 0.340** 0.310** 0.098 1

Notes.
*significant at P < 0.05.
**significant at P < 0.01.
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Table 4 Direct effects (diagonal, underlined) and indirect effects (off-diagonal) of aggregates on fractal dimension (Dv ).

Variable r <0.002
mm

0.002–0.005
mm

0.005–0.01
mm

0.05–0.1
mm

0.1–0.2
mm

0.2–0.25
mm

0.25–0.5
mm

0.5–1
mm

Total U R2

<0.002
mm

0.756** 0.887** 0.311 0.045 −0.123 −0.039 −0.030 −0.167 −0.130 −0.132 0.054 0.997

0.002–0.005
mm

0.646** 0.749 0.368** 0.046 −0.191 −0.057 −0.009 −0.136 −0.124 0.277

0.005–0.01
mm

0.623** 0.732 0.307 0.055** −0.139 −0.034 −0.025 −0.158 −0.116 0.586

0.05–0.1
mm

−0.106 −0.374 −0.242 −0.026 0.291** 0.096 −0.029 0.070 0.108 −0.396

0.1–0.2
mm

0.055 −0.313 −0.191 −0.017 0.256 0.109** 0.008 0.090 0.113 −0.054

0.2–0.25
mm

−0.203* −0.236 −0.030 −0.012 −0.077 0.008 0.112** 0.049 −0.017 −0.314

0.25–0.5
mm

0.165* −0.389 −0.132 −0.023 0.054 0.026 0.014 0.380** 0.236 −0.214

0.5–1
mm

0.142 −0.421 −0.167 −0.023 0.115 0.045 −0.007 0.327 0.274** −0.131

Notes.
*significant at P < 0.05.
**significant at P < 0.01.
r , correlation coefficients between micro-aggregate fractions and fractal dimension; Total, total indirect path coefficient; U , uncorrelated residue.

Zhang
etal.(2018),PeerJ,D

O
I10.7717/peerj.4758

11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.4758


Table 5 The determination coefficients of each factor.

Fractions Silt and clay fraction Microaggregates Macroaggregates

Particle size <0.002
mm

0.002–0.005
mm

0.005–0.01
mm

0.05–0.1
mm

0.1–0.2
mm

0.2–0.25
mm

0.25–0.5
mm

0.5–1
mm

;<0.002
mm

0.787 0.653 0.098 0.516 0.193 0.199 0.674 0.486

;0.002–0.005
mm

0.135 0.040 0.214 0.080 0.082 0.280 0.202

;0.005–0.01
mm

0.003 0.032 0.012 0.012 0.042 0.030

;0.05–0.1
mm

0.085 0.063 0.065 0.221 0.159

;0.1–0.2
mm

0.012 0.024 0.083 0.060

;0.2–0.25
mm

0.013 0.085 0.061

;0.25–0.5
mm

0.144 0.208

;0.5–1
mm

0.075

the <0.002 and 0.01–0.05 mm size classes of the silt + clay fraction (Dyx1x8= 0.486). The
other coefficients of determination were low (Table 5).

Changes of SOC content and Dv over time
The path graph clearly identified the changes of SOC content and Dv from 1998 to 2012
(Fig. 3). SOC content tended to increase over time in the treatments receiving organic
fertiliser (M, MN, MNP, and MP) but not in the treatments receiving mineral fertilisers or
in BL or CK. Dv did not change over time except in BL, where it tended to increase.

DISCUSSION
Effect of fertilisation on SOC content, aggregate distribution and Dv
SOC content did not differ significantly between CK and BL and the treatments receiving
mineral fertiliser. The 15-year application of organic fertiliser significantly increased SOC
content relative to the treatments receiving mineral fertiliser. The plots in this study were
conventionally tilled, and the soybean and maize straw was removed when the crops were
harvested, indicating that the increase in SOC content was mostly due to the application
of organic fertiliser, which has abundant humic material that improves SOC content,
physical properties, and other aspects of the soil such as N and P contents (Haynes &
Naidu, 1998). The application of organic fertiliser can also stimulate the development of
roots in regions with poor soil, such as the Loess Plateau (Banger et al., 2009); up to 40%
of newly photosynthesised carbon is released into soil by roots, thereby increasing the pool
of active organic carbon (Kuzyakov & Cheng, 2001).

Long-term fertilisation, especially with organic fertiliser, can have a large influence on the
distribution of soil aggregates in agro-ecosystems (Miao, Qiao & Zhou, 2009; Plaza-Bonilla,
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Figure 3 Changes of fractal dimension and SOC content in different fertilizer treatments from 1998 to
2012.

Full-size DOI: 10.7717/peerj.4758/fig-3

Alvaro-Fuentes & Cantero-Martinez, 2013; Tripathi et al., 2014). Application of M alone or
in combination with mineral fertiliser (MN, MNP, and MP) increased the proportions
of 0.1–0.25 mm microaggregates (even though the increases were not significant among
MN, MNP, and MP) and 0.25–0.5 mm macroaggregates and correspondingly decreased
the proportion of the 0.01–0.05 mm size class of the silt + clay fraction. In contrast, the
distribution of aggregates relative to CK was not significantly affected by the treatments
with only mineral fertiliser. The application of organic fertiliser was thus quite conducive to
the aggregation of soil particles. Our results were consistent with previous results byMiao,
Qiao & Zhou (2009) who reported that the continual addition of organic fertiliser usually
increased SOC content and microbial activity and had a positive effect on aggregation
on the Songnen Plain in northwestern China. Tripathi et al. (2014), however, reported a
decrease in the proportion of microaggregates under 41 years of fertilisation in a tropical
agro-ecosystem in China. A study conducted in Nanchang reported that organic fertiliser
did not significantly affect microaggregates (Liu et al., 2013). These different results of the
distribution of microaggregates may be attributed to the specific soil characteristics and
climatic conditions. The application of mineral fertilisers, however, can have little impact
on SOC content unless used in conjunction with no tillage and residue management
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(Lal, 2004; Rudrappa et al., 2006; Yang et al., 2003). One study even suggested that the
long-term application of mineral fertilisers would likely degrade small macroaggregates
into microaggregates, or even into the silt and clay fraction, and can lead to disaggregation
(Chen et al., 2010).

Dv could not distinguish among the various treatments, even though it can well describe
the changes in the stability of aggregates and soil structure associated with vegetative
succession (Xiao et al., 2014; Zhao et al., 2006), because Dv was positively correlated with
the proportion of the <0.002 mm size class of the silt + clay fraction (Table 3) that did
not differ significantly among the treatments (Table 2). The proportions of the 0.002–0.01
mm size classes of the silt + clay fraction were also strongly correlated with Dv , but these
correlations were mostly partitioned to the indirect effect of the 0.002–0.01 mm size classes
on Dv due to the <0.002 mm size class. The path analysis indicated that the total indirect
effect of the 0.002–0.01 mm size classes of the silt + clay fraction on Dv was mainly due
to the <0.002 mm size class, with coefficients of 0.732 and 0.749, respectively. The higher
direct effect of the <0.002 mm size class of the silt + clay fraction on Dv (0.887) and the
total indirect effect of the 0.002–0.01 mm size classes on Dv due to the <0.002 mm size
class matched the highest positive correlation coefficient between the <0.002 mm size class
and Dv , corresponding to the highest coefficient of determination of the <0.002 mm size
class (Dyx1x1= 0.787), the large coefficients of determination of the correlations between
the <0.002 mm size class of the silt + clay fraction and 0.25–0.5 mm macroaggregates
(Dyx1x7= 0.674), between the <0.002 and 0.002–0.005 mm size classes of the silt + clay
fraction (Dyx1x2= 0.653), and between the <0.002 and 0.01–0.05 mm size classes of the
silt + clay fraction (Dyx1x8= 0.486). Our result was in agreement with previous studies
by Tang et al. (2013) and Zhao et al. (2006). Xiao et al. (2014) also demonstrated that Dv

was positively correlated with the proportion of the <0.002 mm size class of the silt + clay
fraction.

Correlations between aggregates, Dv , and SOC content
The proportion of the silt + clay fraction (<0.05 mm) was generally negatively correlated
with the proportions of micro- and macroaggregates (0.05–1 mm), but the proportions
of some size classes in the 0.05–1 mm fractions (micro- and macroaggregates) were
positively correlated, indicating that larger aggregates formed at the expense of the silt
and clay fraction and vice versa and that aggregates >0.05 mm may stimulate each other
to reaggregate. This phenomenon was demonstrated by Su et al. (2006), who found that
long-term application of organic fertiliser significantly increased the proportions of both
>2 and 0.25–2 mm aggregates. Chen et al. (2010) demonstrated that the application of
mineral fertiliser increased the proportion of <0.25 mm microaggregates and decreased
the proportion of 0.25–2 mm macroaggregates.

SOC content in our study was correlated negatively with the proportion of the silt+ clay
fraction (<0.05 mm) and positively with the proportions of micro- and macroaggregates
(0.05–1 mm), indicating that the increase in SOC content facilitated aggregation and that
micro- andmacroaggregates played an important role in stabilising the SOC content (Liu et
al., 2015; Tisdall & Oades, 1982). Mucilaginous substances released from organic fertilisers
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bind soil particles into microaggregates and then into macroaggregates, which would
increase the proportions of the 0.1–0.25 mm and 0.25–0.5 size classes (Tisdall & Oades,
1982; Haynes & Naidu, 1998; Tripathi et al., 2014). The long-term application of organic
fertiliser also often increases crop yield and above- and belowground biomass (Manna et
al., 2007). Compounds produced by roots and fungal hyphae, such as polysaccharides and
other byproducts generated by the decomposition of organic material in soil, can bind
microaggregates together into macroaggregates (Liao et al., 2006).

Changes of Dv and SOC content over time
The long-term application of organic fertiliser increased SOC content from 1998 to 2012,
in agreement with the findings by Xu et al. (2016) and Banger et al. (2009), who attributed
this increase to the long-term addition of organic material and the continuous return of
large amounts of biomass in the form of roots and stubble. Su et al. (2006) found that the
combination of organic and mineral fertilisers could substantially increase N, P, and K
contents. Crop residues were removed in our study, so the long-term application of organic
fertiliser may be the most effective option for improving and maintaining nutrient levels
and soil quality.

CONCLUSIONS
Treatments receiving organic fertiliser increased the proportions of 0.1–0.25 mm
microaggregates and 0.25–0.5 mm macroaggregates and correspondingly decreased the
proportion of the 0.01–0.05mm size class of the silt+ clay fraction relative to CK, indicating
that the application of organic fertiliser was favourable to the formation of larger aggregates.
Dv could not distinguish among the various treatments, becauseDv wasmainly determined
by the proportion of the <0.002 mm size class of the silt + clay fraction that did not differ
significantly among the treatments. SOC content was significantly higher in the treatments
receiving organic fertiliser (M, MN, MP, and MNP) compared to those receiving mineral
fertiliser, BL, and CK and tended to increase over time, which promoted the formation of
larger aggregates and the sequestration of SOC. The application of organic fertiliser can
thus contribute greatly to the improvement and sustainability of soil quality in semi-arid
agricultural land when residues are removed.
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