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A B S T R A C T

Knowledge of the soil water and stoichiometrical characteristics (SC) during long-term natural vegetation re-
storation is essential for managing the restoration of vegetation. To evaluate the response of soil water storage
(SWS), soil organic carbon (SOC), total nitrogen content (TN) and total phosphorous content (TP) to long-term
natural vegetation restoration (∼160 a), we examined the soil moisture and SC in areas with different re-
storation ages located in the central part of the Loess Plateau, China. Our results showed that the SWS decreased
significantly with vegetation restoration and that the C:P ratio, N:P ratio, TN and TP increased significantly. The
SWS increased gradually, whereas the SOC, C:P ratio, N:P ratio, TN and TP in each restoration stage decreased
significantly with increasing soil depth in the 0–60 cm soil layer. These parameters tended to be stable in the soil
layer below 60 cm. Vegetation acts as a link between SWS and soil SC, and they interact with each other in-
directly. SWS and SWC showed an significant positive relationship (P < 0.01), whereas SWS and SOC, TN, TP,
C:P ratio, and N:P ratio showed significant negative relationships (P < 0.01), thus, SOC, TN and TP are the key
chemical factors affecting SWS.. These results could help estimating the productivity and sustainability of
semiarid ecosystems and improve future eco-environmental reconstructions.

1. Introduction

Soil erosion is a modern global problem that induces severe eco-
nomic consequences (Montgomery, 2007), environmental effects (Lal,
1995), and accelerated degradation of soil quality (An et al., 2008). In
the Loess Plateau of China there are extreme environmental problems
(Kimura et al., 2007), especially in the region severely affected by wind
and water erosion covering ca. 178 million square meters
(35°25′–40°38′N, 103°00′–113°53′E), about 29% of the total area of the
plateau in the transitional zone between arid and semi-arid areas (Li
et al., 2003). Secondary succession can lead to the recovery of the
properties of degraded soil and maintain soil fertility (Wang et al.,
2011a; Deng et al., 2013; Zhang and Shangguan, 2016). To control soil
erosion and ecosystem degradation, a large area of agricultural land on
the Loess Plateau has been converted to other uses during the past few
decades. For example, farmland has been converted into grasslands,
shrublands and forests with natural vegetation (Zhou et al., 2012; Feng
et al., 2013; Deng et al., 2014). Information on the secondary forest
succession processes on the Loess Plateau is of great significance, as it
could reveal the relationship between the succession of vegetation and

the evolution of soil ecological functions, thereby proving guidance for
eco-environmental reconstruction (Zhang et al., 2016).

Soil water is a critical variable in studies of hydrological processes
and the soil–plant–atmosphere continuum, especially in arid and semi-
arid regions of the world such as the Loess Plateau of China where
groundwater is buried below the thick unsaturated loessial soil (Jia and
Shao, 2014). It directly controls the main source of water consumed by
vegetation and the availability of water to plants (Martinez-Fernandez
and Ceballos, 2003). Furthermore, soil water is the most limiting factor
in the production and restoration of vegetation on the Loess Plateau
(Xia and Shao, 2008; Gao et al., 2011; Jia and Shao, 2013a) and heavily
influences the spatial and temporal distribution patterns of vegetation.
Soil water storage (SWS), which is associated with the soil water con-
tent (SWC), is critical for sustaining rain-fed agriculture on the Loess
Plateau (Yang, 2001). Long-term vegetation restoration has had sig-
nificant effects on the SWS in grasslands and forests, and the SWS has
decreased significantly with vegetation restoration (Zhang et al., 2016).
Information on the dynamics of soil moisture needed for vegetation
restoration in arid and semi-arid regions is essential for estimating the
productivity and sustainability of semiarid ecosystems.
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Ecological stoichiometry provides a powerful framework for
studying how vegetation types affect the balance of essential nutrients
(e.g., carbon (C), nitrogen (N) and phosphorous (P)) during long-term
natural vegetation succession, in which the cycling dynamics of soil
nutrients may affect successional patterns, plant production and eco-
system processes (Peltzer et al., 2010; Osman and Barakbah, 2011;
Yuan and Chen, 2012b). Soil organic carbon (SOC) is the largest C stock
in the terrestrial ecosystem (Batjes, 1996). Deng et al. (2014) found that
changes of land use types have a significant effect on the global C cycle
through changing soil C accumulation rates and turnover. The affor-
estation of formerly arable affected the redistribution of SOC in the soil
profile, but the SOC did not increase over three decades (Vesterdal
et al., 2002), however, Murty et al. (2002) observed that 24% of the
SOC stock has been lost from forestland to cropland and Guo and
Gifford (2002) found 59% has been lost from pastureland to cropland
globally. As the higher SOC stocks and recalcitrance, the deeper soil
layers play a vital role in SOC sequestration and storage (SOCS)
(Rumpel and Kögel-Knabner, 2011). Changes in the plant species
composition with the vegetation restoration can alter soil aggregation
(An et al., 2010), root system and litter input (Schedlbauer and
Kavanagh, 2008), which will further change the stabilization and sto-
rage of SOC (Blanco-Canqui and Lal, 2004). Galloway et al. (2004)
reported that N is the most common limiting element for plant pro-
duction in the terrestrial biosphere and N dynamics are a key parameter
in the regulation of long-term terrestrial C sequestration (Luo et al.,
2004). In agricultural ecosystems, soil total nitrogen (TN) and total
phosphorus (TP) are the major determinants and indicators of soil
fertility and quality, which are closely related to soil productivity. The
reduction of TN and TP levels can result in a decrease in soil nutrient
supply, fertility, porosity, penetrability, and, consequently, in soil
productivity (Wang et al., 2009). Thus, information on the spatial dis-
tribution of STN and STP is needed for the purpose of evaluating po-
tential crop yields. Soil C:N:P stoichiometry is essential for under-
standing the nutrient cycling in terrestrial ecosystems (Tian et al., 2010;
Yuan and Chen, 2012a). However, the mechanism of how Soil C:N:P
stoichiometry changes with natural vegetation restoration is still un-
clear for Loess Plateau. The study of ecological stoichiometry is crucial
in accelerating scientific understanding of nutrient biogeochemistry
and associated behavior during nutrient circulation (Jeyasingh and
Weider, 2007; Bradshaw et al., 2012). However, at present, soil C, N,
and P stoichiometrical characteristics with respect to vegetation re-
storation have yet to be fully described (Jiao et al., 2013).

Vegetation can affect the SWS, SWC, SOC, TN, TP and other SC
through the physiological activity of roots, the addition of leaf litter and
the affected soil physical properties, such as soil bulk density, particle
composition, hydraulic conductivity, etc. Additionally, soil water and
SC inevitably influence plant growth. Thus, although SWS and SC see-
mingly cannot directly interact, they influence each other indirectly.
Information about the change of soil SC in the long-term natural ve-
getation restoration could provide a powerful framework for studying
how vegetation types affect the balance of essential nutrients, help es-
timating the productivity and sustainability of semiarid ecosystems and
improve future eco-environmental reconstructions. In the Ziwuling

Forest Region of the Loess Plateau, there has an intact series in the
naturally recovering vegetation restoration on the Loess Plateau. In this
study, we hypothesized that SWS and soil SC can negatively interact
each other and both vary with natural vegetation restoration on the
Loess Plateau, and our aim was to reveal the SWS response dynamics
and SC to different vegetation restoration stages and the relationships
between them. The specific objectives of the study were to investigate
(1) the spatio-temporal dynamics of SWS and SC along with vegetation
restoration, (2) the relationships between SWS and SC during the
conversion of grassland to forestland, and (3) the key chemical factors
affecting the SWS.

2. Materials and methods

2.1. Study area

The study was conducted on the Lianjiabian Forest Farm of Heshui
County in Gansu Province, China (35°03′–36°37′ N, 108°10′–109°18′E,
1,211–1,453m a.s.l.). The Ziwuling forest region covers a total area of
23,000 km2. It has an mean rainfall of 587mm, mean temperature of
10 °C and cumulative temperature of 2,671 °C. The soils of the region
are largely Loessial (Jia et al., 2005). In this area, the forest canopy
density ranges from 80% to 95% (Cheng et al., 2012), and secondary
forests have naturally regenerated from grassland to shrubland to
climax forest (Q. liaotungensis) through approximately 160 years (Wang
et al., 2010a). Shrub and herbaceous communities recovery times were
estimated from the local elders and descriptions found in contracts
between farmers and local governments and forest community recovery
times were estimated by counting the growth rings and consulting re-
lated written sources (Wang et al., 2010b). Throughout the region,
Bothriochloa ischaemum (Linn.) Keng, Carex lanceolata Boott, Potentilla
chinensis (Ser) and Stipa bungeana Trin are the dominate herb species,
Sophora davidii (Franch.) Skeels, Hippophae rhamnoides (Linn.), Rosa
xanthina Lindl and Spiraea pubescens Turcz are the dominate shrub
species, Populus davidiana Dode and Etula platyphylla Suk communities
dominate the pioneer forests, and. the climax vegetation is the Quercus
liaotungensis Koidz forest (Table 1).

2.2. Experiment design and soil sampling

A field survey was undertaken between August 1 and August 15,
2014. Five 20m×20m plots were chosen in each forest community,
five 5m×5m plots were chosen in the shrub communities, and five
2m×2m plots were chosen in the herbaceous communities. All of the
plots faced northeast and the slope gradient is less than 20°. Four soil
sites were selected in areas with vegetation that had been allowed to
grow for approximately 10, 50, 110 and 160 years naturally.

Soil samples were taken at five points: the four corners and the
center of the soil sampling sites described above. The soil samples were
taken at 20-cm intervals to a depth of 2m using a drill and stored in
sealed aluminum cases for measuring the SWC. Undisturbed soil cores
were collected using a soil bulk sampler for measuring the soil bulk
density at 0–60 cm. To measure SOC, TN and TP, disturbed soil samples

Table 1
Geographical and vegetation characteristics at different restoration stages in the Ziwuling forest region of the Loess Plateau.

Restoration stages Latitude Longitude Altitude Aspect Slope Coverage Main plant species

(N) (E) (m) (°) (%)

G(10 a) 36°05′04.0″ 108°31′37.4″ 1348 NE 14 85 Lespedeza bicolorr
S(50 a) 36°04′14.4″ 108°32′01.4″ 1354 NE 18 90 H. rhamnoides
F1(110 a) 36°03′05.3″ 108°32′31.8″ 1437 NE 10 90 P. davidiana, Q. liaotungensis
F2(160 a) 36°02′57.5″ 108°32′13.7″ 1449 NE 18 95 Q. liaotungensis

Note: G represents the grass restoration stage, S represents the shrub restoration stage, F1 represents the early forest stage, and F2 represents the climax forest stage. Numbers in
parentheses following the restoration stage are the ages after cropland abandonment. G, S and F stand for grassland, shrub and forest, respectively.
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were also taken at 20-cm intervals to a depth of 2m using a drill and
sieved through a 2-mm screen.

2.3. Laboratory assay

The SWC was measured gravimetrically (Jia et al., 2012). The SOC
was assayed by dichromate oxidation (Kalembasa and Jenkinson,
1973). The total nitrogen content (TN) was measured according to the
semi-micro Kjeldahl method (Jackson, 1973). The total phosphorous
content (TP) was measured via colorimetry following digestion with
perchloric acid and sulfuric acid.

2.4. Soil water storage

SWS in this study was calculated by the following equation (Jia and
Shao, 2013a):

=sws θv h· ·10

where SWS is the soil water storage value at a specific depth (mm), θv is
the volumetric soil water content at a specific depth (cm3 cm−3), and h
is the soil depth increment (cm).

2.5. Statistical analysis

Pearson's test was adopted to determine whether there were sig-
nificant correlations between soil water storage and the soil properties
measured in the study. Differences were evaluated at the 0.05

significance level. When significance was observed at the P < 0.05
level, the Tukey’s post hoc test was used to carry out the multiple
comparisons. A one-way ANOVA was used to analyze the means of the
same soil layers across the different restoration stages.

3. Results

3.1. Vertical dynamics of soil water and stoichiometrical characteristics

Both SWS and the stoichiometry in different soil layers varied sig-
nificantly at each natural vegetation restoration stage. Vertical varia-
tions in the SWS and SC in the 0–200 cm soil layer in the four re-
storation stages are shown in Fig. 1. With increasing soil depth, the SWS
(Fig. 1a) and SWC (Fig. 1b) increased gradually in each restoration
stage, whereas the SWS and SWC in the grassland tended to be stable in
the soil layer below 80 cm. However, the SOC (Fig. 1c), C:P ratio
(Fig. 1e), N:P ratio (Fig. 1f), TN (Fig. 1 g) and TP (Fig. 1 h) in each
restoration stage decreased with increasing soil depth in the 0–200 cm
soil layer, and all of them decreased significantly in the 0–60 cm soil
layer. Below 60 cm, they tended to be stable. The C:N ratio (Fig. 1d) in
the 0–200 cm soil layer fluctuated irregularly in each restoration stage.

3.2. Temporal dynamics of soil water and stoichiometrical characteristics

In association with the long-term natural vegetation restoration,
both the SWS and SC varied significantly among the different soil
layers. The temporal dynamics of SWS and stoichiometry in the

Fig. 1. Vertical variations in (A) soil water storage (SWS), (B) soil water content (SWC), (C) soil organic carbon content (SOC), (D) C:N ratio, (E) C:P ratio, (F) N:P ratio, (G) total nitrogen
content (TN) and (H) total phosphorous content (TP) for the 0–200 cm soil depth in each restoration stage (see Table 1). The values are in the form of mean ± SE, with a sample size of
n= 5.
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different soil layers are shown in Fig. 2. With increasing restoration age,
the SWS (Fig. 2A) and SWC (Fig. 2B) increased in the 0–20 cm soil
layer, whereas the SWS decreased in the 20–40 cm, 40–60 cm, 0–60 cm
and 0–200 cm soil layers. Similarly, the SWC also decreased in the
20–40 cm, 40–60 cm, and 0–60 cm layers but not in the 0–200 cm soil
layer. The SOC (Fig. 2C) showed an increasing trend in the five soil
layers but not in the 0–200 cm soil layer. The C:N ratio (Fig. 2D) in the
grassland was lower than that in the shrubland and forestland only in
the 20–40 cm and 0–200 cm; in the other soil layers, no significant
difference was present. The C:P ratio (Fig. 2E), N:P ratio (Fig. 2F) and
TN (Fig. 2G) showed the same clear increasing trends in the 0–20 cm,
20–40 cm, 40–60 cm and 0–60 cm soil layers. However, all three varied
slightly among the different restoration stages in the 0–200 cm soil
layer. TP (Fig. 2H) generally showed an increasing trend in all five soil
layers with natural vegetation restoration.

3.3. Relationships between soil water storage and stoichiometrical
characteristics

The significant correlation between SWS and SC over long-term
natural vegetation restoration and the relationship between soil water
storage and SC at all restoration stages for the 0–200 cm soil layer are
shown in Fig. 3. SWS and SWC (Fig. 3A) showed an significant positive
relationship (P < 0.01), whereas SWS and SOC (Fig. 3B), SWS and TN
(Fig. 3C), SWS and TP (Fig. 3D), SWS and the C:P ratio (Fig. 3F), and
SWS and the N:P ratio (Fig. 3G) showed significant negative relation-
ships (P < 0.01). However, SWS and the C:N ratio showed a negative
relationship with no significance in the 0–200 cm soil depth in the long-

term natural vegetation restoration (P > 0.05).

4. Discussion

Different land use types in the long-term natural vegetation re-
storation can have significant influence on the SWS. The increase in tree
biomass can drastically decrease the water content of soils (Honda and
Durigan, 2016). This study found that the SWS in the 0–200 cm soil
layer significantly decreased with the vegetation restoration stages
from grassland to forestland (Fig. 2A). This is because SWC showed the
same trend along with the vegetation restoration. The SWS exhibits an
significant positive relationship with the SWC (P < 0.01) (Fig. 3A). In
this study, the SWC in each restoration stage varied significantly among
the different soil layers in the 0–200 cm soil depth, the SWC in shallow
layers was lower than that in deep layers, the reason would be that the
soil moisture in the upper soil layers was more influenced by vegetation
transpiration and soil evaporation (Meerveld and McDonnell, 2006;
Seneviratne et al., 2010), Oki and Kanae (2006) found that vegetation
transpiration and soil evaporation combined could consume as much as
60% of total precipitation which is the sole water source in the upper
layers and transpiration and evaporation could consume 90% of total
precipitation in the Loess Plateau (Wang et al., 2011b), this is consistent
with the previous research in arid and semi-arid areas (Mishra and
Singh, 2010), and the SWC variation among the soil layers near the soil
surface was higher than that in the deeper soil layers due to the fre-
quent exchange of water and energy in the soil surface layers (Jia and
Shao, 2013b). The SWC in the forest stage was significantly lower than
those at the shrub stage or grass stage (P < 0.05), which is similar to

Fig. 2. (A) Soil water storage (SWS), (B) soil water content (SWC), (C) soil organic carbon content (SOC), (D) C:N ratio, (E) C:P ratio, (F) N:P ratio, (G) total nitrogen content (TN) and (H)
total phosphorous content (TP) in the different soil layers in each restoration stage (see Table 1). Values are in the form of mean ± SE, with a sample size of n= 5. Different lower-case
letters above the bars represent significant differences among the same soil layer in different restoration stages (P < 0.05).
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the results of Wang et al. (2006) because of the higher root densities
resulting in a greater transpiration ability (Wang et al. 2010b).

In this study, the SOC in the 0–60 cm soil layer significantly de-
creased in all stages of restoration (Fig. 1C), this is because of the de-
creasing organic material inputs transformed from the roots and root
exudates (Nelson et al., 2008) with the increasing soil depth, however,
the SOC transformed by plant litter increased with natural vegetation
restoration (Castro et al., 2010). This finding is consistent with the
results of Deng et al. (2013). In our study, soil TN increased with ve-
getation restoration, decreased with soil depth, and tended to be stable
in the soil layers below 60 cm. The trend was the same as that of SOC.
This is consistent with the results of Deng et al. (2013). Fu et al. (2010)
reported that vegetation restoration would improve SOC and TN se-
questration over the long term because of the resulting reduction of the
losses of SOC and TN to soil erosion. On the contrary, soil organic
carbon and nitrogen losses are influenced by vegetation removal in
semiarid regions (Murty et al., 2002). In general, in this study, the soil
TP in the 0–200 cm soil depth in the grass restoration stage was lower
significantly than that in the shrub and forest restoration stages, and the
N:P ratio showed a similar trend to those of soil TP and the C:P ratio,
which may be because trees produce much more aboveground and
belowground biomass than grasses or shrubs (Qi et al., 2015). The dead
roots, decomposed litter, and root secretions in the soil changed the soil
TP, N:P ratio and C:P ratio during the vegetation restoration restoration
in the study area. However, the C:N ratio fluctuated irregularly in the
0–200 cm soil depth in each restoration stage, which may be due to the
same variation dynamics in SOC (Fig. 1C) and TN (Fig. 1G).

The interactions between soil water and vegetation are essential for
ecological processes in semiarid regions (Yang et al., 2014). In this
study, the soil water and SC exhibited significant relationships in the

0–200 cm soil depth in the long-term natural vegetation restoration
(Fig. 3). Spatiotemporal patterns of soil water can significantly influ-
ence vegetation, and vice versa. This finding was attributed to that
plant growth conditions can change the spatial pattern of soil water
(Yang et al., 2012) and vegetation types can significantly influence the
soil water dynamics (Chen et al., 2007) in semi-arid regions. Ordonez
et al. (2010) found that leaf N and P concentrations showed strong
relationships with soil P; thus, soil P can affect the growth of the ve-
getation. Meanwhile, vegetation absorbs soil C, N and P through roots,
thereby changing the soil C, N and P concentrations and their ratios.
Hence, SWS and soil SC interact with each other indirectly because
vegetation acts as a link between them. SWS and SWC showed an sig-
nificant positive relationship (P < 0.01), whereas SWS and SOC, TN,
TP, C:P ratio, and N:P ratio showed significant negative relationships
(P < 0.01) (Fig. 3). Therefore, SWS had significant relationships with
the SC besides SWC, and SWC, SOC, TN, and TP were the important
factors affecting the SWS.

Overall, our study reveals that the soil water and SC were affected
by different vegetation types during long-term natural vegetation re-
storation on the Loess Plateau of China. The SWS and soil chemical
factors, such as SOC, TN and TP, would interact each other. The in-
formation would provide the reference for agriculture management and
restoration processes in arid and semi-arid lands. To better understand
the relationship between SWS and SC, further study is needed to ad-
dress the functional mechanism between soil water and C, N and P.

5. Conclusions

Long-term vegetation restoration has had significant effects on the
SWS and SC of areas transitioning from grassland to forest. The SWS

Fig. 3. Relationships between soil water storage (SWS) and (a) soil water content (SWC), (b) soil organic carbon content (SOC), (c) total nitrogen content (TN), (d) total phosphorous
content (TP), (e) C:N ratio, (f) C:P ratio and (g) N:P ratio for the 0–200 cm soil depth in all restoration stages. Capped horizontal and vertical lines represent the SE.
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significantly decreased with vegetation restoration, whereas the C:P
ratio, N:P ratio, TN and TP clearly increased. Only the grassland SWC
tended to be stable in the soil layer below 80 cm. With increasing soil
depth in the 0–60 cm soil layer in each restoration stage, the SWS in-
creased gradually, whereas the SOC, C:P ratio, N:P ratio, TN and TP
decreased significantly before stabilizing in the soil layer below 60 cm.
Vegetation acts as a link between SWS and soil SC, and they interact
with each other indirectly. SWS and SWC showed an significant positive
relationship (P < 0.01), whereas SWS and SOC, TN, TP, C:P ratio, and
N:P ratio showed significant negative relationships (P < 0.01), thus,
SOC, TN and TP are the key chemical factors affecting SWS. The results
of this study could provide a powerful framework for studying how
vegetation types affect the balance of essential nutrients, help esti-
mating the productivity and sustainability of semiarid ecosystems and
improve future eco-environmental reconstructions.
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