
Frontiers of Earth Science                                          CN 11-5982/P                      
https://doi.org/10.1007/s11707-018-0725-9                            ISSN 2095-0195                     
RESEARCH ARTICLE 

A fast and simple algorithm for calculating flow 

accumulation matrices from raster digital elevation 

models 

Guiyun ZHOU ()1,2, Hongqiang WEI2, Suhua FU3,4 

1 Center for Information Geoscience, University of Electronic Science and Technology of China, 

Chengdu 611731, China 

2 School of Resources and Environment, University of Electronic Science and Technology of 

China, Chengdu 611731, China 

3 

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil 

and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, China 

 4 Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China 

 

 

 

Front. Earth Sci., Just Accepted Manuscript • https://doi.org/10.1007/s11707-018-0725-9 
 

http://journal.hep.com.cn on November 1, 2018 

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 

 

Just Accepted 

This is a “Just Accepted” manuscript, which has been examined by the peer-review process and 

has been accepted for publication. A “Just Accepted” manuscript is published online shortly after 

its acceptance, which is prior to technical editing and formatting and author proofing. Higher 

Education Press (HEP) provides “Just Accepted” as an optional and free service which allows 

authors to make their results available to the research community as soon as possible after 

acceptance. After a manuscript has been technically edited and formatted, it will be removed from 

the “Just Accepted” Web site and published as an Online First article. Please note that technical 

editing may introduce minor changes to the manuscript text and/or graphics which may affect the 

content, and all legal disclaimers that apply to the journal pertain. In no event shall HEP be held 

responsible for errors or consequences arising from the use of any information contained in these 

“Just Accepted” manuscripts. To cite this manuscript please use its Digital Object Identifier 

(DOI(r)), which is identical for all formats of publication.” 
  



2 
 

https://doi.org/10.1007/s11707-018-0725-9 

Front. Earth Sci. 

Guiyun ZHOU et al. A fast and simple algorithm for calculating flow accumulation matrices 

RESEARCH ARTICLE 

A fast and simple algorithm for calculating flow 

accumulation matrices from raster digital elevation 

models 

Guiyun ZHOU ()1,2, Hongqiang WEI2, Suhua FU3,4 

1 Center for Information Geoscience, University of Electronic Science and Technology of China, 

Chengdu 611731, China 

2 School of Resources and Environment, University of Electronic Science and Technology of 

China, Chengdu 611731, China 

3 

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil 

and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, China 

 4 Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China 

Received January 24, 2018; accepted July 8, 2018 

E-mail: zhouguiyun@uestc.edu.cn 

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 

Abstract Calculating the flow accumulation matrix is an essential step for many hydrological and 

topographical analyses. This study gives an overview of the existing algorithms for flow 

accumulation calculations for single-flow direction matrices. A fast and simple algorithm for 

calculating flow accumulation matrices is proposed in this study. The algorithm identifies three 

types of cells in a flow direction matrix: source cells, intersection cells, and interior cells. It 

traverses all source cells and traces the downstream interior cells of each source cell until an 

intersection cell is encountered. An intersection cell is treated as an interior cell when its last 

drainage path is traced and the tracing continues with its downstream cells. Experiments are 

conducted on thirty datasets with a resolution of 3 m. Compared with the existing algorithms for 

flow accumulation calculation, the proposed algorithm is easy to implement, runs much faster than 

existing algorithms, and generally requires less memory space. 

Keywords flow accumulation, flow direction, DEM, GIS 



3 
 

1 Introduction 

The automatic extraction of drainage networks from raster digital elevation models (DEMs) is 

required in many scenarios such as soil erosion modeling, hydrological process simulation, and 

geomorphological analysis (Fu et al., 2011; Nobre et al., 2011; Yamazaki et al., 2012; Buchanan 

et al., 2014; Bai et al., 2015). A widely used method for extracting drainage networks from DEMs 

is based on the simulation of surface flow (Jenson and Domingue, 1988; Wang and Liu, 2006; 

Zhou et al., 2016). The method is composed of multiple steps which include removing depressions, 

assigning flow directions, and calculating the flow accumulation matrix. Among these procedures, 

calculating the flow accumulation matrix is an important step. The flow accumulation of a cell is 

equal to the number of cells that drain to it (O’Callaghan and Mark, 1984). Flow accumulation is 

an essential input for many hydrological and topographic analyses such as stream channel 

extraction, stream channel ordering, and sub-watershed delineation (Bai et al., 2015; Su et al., 

2015; Barnes, 2017). 

Some algorithms derive the flow accumulation matrix directly from a DEM (Arge et al., 2003; 

Bai et al., 2015). These algorithms generally require cells to be sorted based on their elevation 

values and have O(NlogN) time complexity. They start from the highest cells and gradually move 

to lower cells. The algorithms encounter problems in flat areas, where flow directions cannot be 

determined based solely on the values of the neighboring cells. These algorithms access cells in an 

order based on their elevations and can result in random scattered data swapping between memory 

and the hard drive when they are applied to massive DEMs that do not fit in the main memory (Su 

et al., 2015). 

It is more common to derive the flow accumulation matrix from a flow direction matrix rather 

than directly from a DEM. There are two methods for flow direction determination from a DEM: 

the single-flow direction method and the multiple-flow direction method. In the single-flow 

direction method, each cell only drains to one neighboring cell. The D8 method, which uses the 

direction of steepest descent as the flow direction of a cell, is the most widely adopted single-flow 

direction method (O’Callaghan and Mark, 1984; Garbrecht and Martz, 1997; Nardi et al., 2008; 

Barnes et al., 2014). In the multiple-flow direction method, each cell can flow to more than one 

neighboring cell (Freeman, 1991; Quinn et al., 1991; Qin and Zhan, 2012). Because the D8 

method is the most widely used method for determining flow direction, this study focuses on 

calculating the flow accumulation matrix from the flow direction matrix that is derived using the 

single-flow D8 method. The assignment of flow directions in depressions and flat areas in a DEM 

must be treated with special algorithms when the D8 method is used (Garbrecht and Martz, 1997; 

Wang and Liu, 2006; Barnes et al., 2014). 

With the advent of airborne LiDAR (Light Detection and Ranging) technology, DEMs have 

become increasingly large. It is common for a DEM to contain billions of cells. The time required 

to calculate flow accumulation matrices of massive DEMs using conventional methods is 

becoming prohibitively long. In recent years, new algorithms have been proposed for calculating 

flow accumulation matrices. In this study, we propose a fast and simple algorithm to calculate the 

flow accumulation matrix. The remainder of the paper is organized as follows. Section 2 gives an 



4 
 

overview of the algorithms for flow accumulation calculation from single-flow flow direction 

matrices. Our proposed algorithm is presented in Section 3. Section 4 presents the experimental 

results and compares the proposed algorithm with existing algorithms. Section 5 concludes the 

paper. 

2 Overview of algorithms for flow accumulation calculation 

In this section, we give an overview of the algorithms for calculating flow accumulation from 

single-flow flow direction matrices. All the algorithms produce the same flow accumulation 

matrix for the same input flow direction matrix. For convenience, Table 1 lists a group of symbols 

that are used in the pseudocode of the algorithms. Among the symbols, the symbol of NextCell(c) 

represents a function that returns a Boolean value and is used for tracing the immediate 

downstream cell of input cell c. If the input cell c drains towards the outside of the DEM or to a 

NODATA cell, the function returns a false value. Otherwise, the function returns a true value and 

cell c is updated to point to the downstream cell to which it drains. 

Table 1 Symbols used in the pseudocodes 

Symbol Description 

FlowDir The input flow direction matrix 

FlowAccu The output flow accumulation matrix 

NextCell(c) 

 

A function returning a Boolean value. If the input cell c drains towards the outside of 

the DEM or it drains to a NODATA cell, the function returns a false value. 

Otherwise, the function returns a true value and cell c is updated as the downstream 

cell to which it drains 

NIDP The matrix giving the number of immediately adjacent cells that flow into each cell 

c, n Cells in matrices 

2.1 NIDP-based algorithms 

These types of algorithms are based on the concept of the number of input drainage paths (NIDP). 

The NIDP of a cell c is the number of neighboring cells that drain to c. Cells with an NIDP of zero 

are usually located on ridges, and cells with an NIDP greater than one are the intersection cells of 

more than one drainage path. The pseudocode for calculating the NIDP matrix from a flow 

direction matrix is shown in Algorithm 1 (Fig. 1). 



5 
 

 

Fig. 1 Algorithm 1: compute the NIDP matrix from FlowDir matrix. 

The earliest version of the algorithm is proposed by O’Callaghan and Mark (1984). Their 

algorithm initializes the flow accumulation matrix with the value of one and starts from cells with 

an NIDP of zero. Suppose c is a cell with an NIDP value of zero. The flow accumulation of the 

immediate downstream cell n of c is increased by the accumulation value of c. The NIDP value of 

n is decreased by one. This iterative process stops when all cells have an NIDP value of zero. The 

number of iteration steps depends on the length of the longest drainage path. In the worst case, the 

time complexity is O(N2), where N is the number of cells. On average, the length of the longest 

drainage path is expected to be the magnitude of N0.5 and the average time complexity of the 

algorithm is O(N1.5). Their algorithm is implemented in ArcGISTM hydrology toolset (Choi, 2012) 

and is widely used (Ortega and Rueda, 2010). 

Yao and Shi (2015) proposed an alternating scanning scheme for this algorithm, which reduces 

the time complexity of the algorithm to O(NlogN). Wang et al. (2011) proposed an improved 

version of this algorithm. Their algorithm, referred to as Wang’s algorithm in this study, uses a 

plain queue to record the starting cell in each iteration step. Initially, Wang’s algorithm pushes all 

cells with NIDP values of zero into the queue. When a cell c is popped off the queue, the 

accumulation value of its immediate downstream cell n is increased by the accumulation value of 

c and the NIDP of n is decreased by one. If the NIDP of n becomes zero, n is pushed into the 

queue. The algorithm stops when the queue becomes empty. Wang’s algorithm has a time 

complexity of O(N). The pseudocode of Wang’s algorithm is shown in Algorithm 2 (Fig. 2). 



6 
 

 

Fig. 2 Algorithm 2: compute the FlowAccu matrix from FlowDir matrix using Wang’s algorithm. 

Jiang et al. (2013) proposed another improved version of the original algorithm by O’Callaghan 

and Mark (1984). The improved algorithm, referred to as Jiang’s algorithm in this study, does not 

require the creation of an NIDP matrix by using the flow accumulation matrix to store the NIDP 

information. A cell whose NIDP value is m is assigned the value of ‒1-m in the flow accumulation 

matrix. A cell whose value is ‒1 in the flow accumulation matrix is a cell without any input 

drainage path and is pushed into a stack. When a cell is popped off the stack, the accumulation 

values of its upstream neighbors have been computed and its accumulation value can be computed 

by iterating over all of its neighboring cells that drain to it. Jiang’s algorithm does not require the 

creation of an NIDP matrix but the accumulation value of each cell needs to be calculated by 

iteration over all of its neighboring cells. Jiang’s algorithm has a time complexity of O(N). The 

pseudocode of Jiang’s algorithm can be found in Jiang et al. (2013). 

2.2 Traversal algorithm 

This algorithm traverses each cell within a flow direction matrix row by row and column by 

column. When a cell c is traversed, the accumulation values of all downstream cells of c are 

increased by one. The time complexity of the algorithm depends on the length of the longest 

drainage path. As discussed in Section 2.1, the length of the longest drainage path is expected to 

be the magnitude of N0.5 and the average time complexity of the method is O(N1.5). 

2.3 BTI-based algorithm 

Su et al. (2015) propose an algorithm to use basin tree indices (BTI) to guide the calculation of the 

flow accumulation matrix. Their algorithm starts from the outlet cells that drain to the outside of 

the DEM and builds basin trees by tracing the drainage paths from the outlet cells to the source 

cells of each basin. The flow accumulation matrix is then calculated by tracing the trees from the 

leaves to the roots. The time complexity of the algorithm is O(N). The pseudocode of this 

algorithm is shown in Algorithm 3 (Fig. 3). To avoid the repeated reallocation of the arrays for 



7 
 

storing the trees, an array of size N is pre-allocated for storing all of the basin trees in our 

implementation of the algorithm in Section 4. 

 

Fig. 3 Algorithm 3: compute the FlowAccu matrix from the FlowDir matrix using the BTI-based algorithm. 

2.4 Recursive algorithm 

This algorithm computes the accumulation value of a cell c by recursively computing the 

accumulation values of all of its neighboring cells that drain to it (Freeman, 1991; Choi, 2012). 

This is the first algorithm for flow accumulation computation that has a time complexity of O(N). 

The pseudocode of this algorithm is shown in Algorithm 4 (Fig. 4). Usually, the program that 

implements the recursive algorithm needs to determine the maximum size for the call stack during 

compilation and this size must be sufficiently large to process input data, which is a challenging 

issue to deal with when the size of the input data is unknown. 



8 
 

 

Fig. 4 Algorithm 4: compute the FlowAccu matrix from FlowDir matrix using the recursive algorithm. 

2.5 Iterative scanning algorithm 

Zhang et al. (2013) computed the flow accumulation matrix using an iterative procedure. Each 

iteration step includes a forward and a reverse traversal of the accumulation matrix. During each 

traversal, the accumulation value of a cell is compared with the sum of the accumulation values of 

all of its neighboring cells that drain to it, and the accumulation value of the cell is updated as the 

sum if the sum is greater than the accumulation value of the cell. The iteration stops when there 

are no changes in the accumulation values of all cells. Each iteration step has a time complexity of 

O(N). The number of iterations depends on the length of the longest drainage path. In the worst 

case, the time complexity is O(N2). 

3 A fast and simple algorithm for flow accumulation calculation 

In this section, we present a new algorithm for calculating flow accumulation from single-flow 

flow direction matrices. We compare the time complexity and memory requirement of our 

algorithm with those of the four existing algorithms that also have O(N) time complexity. 

3.1 The proposed algorithm 

The four existing algorithms, including Wang’s algorithm, Jiang’s algorithm, the BTI-based 

algorithm, and the recursive algorithm, have O(N) time complexity. Other algorithms for flow 

accumulation calculation have higher time complexity, run substantially slower, and are not 

considered further in this study. In this section, we propose our algorithm, which also has O(N) 

time complexity. Compared with the above algorithms, the proposed algorithm has a smaller 

constant coefficient before the time complexity, allowing for faster computation. 



9 
 

In our algorithm, we define three types of cells within the flow direction matrix: source cells, 

interior cells, and intersection cells. A source cell does not have any neighboring cells that drain to 

it and its NIDP value is zero. An interior cell has only one neighboring cell that drains to it and its 

NIDP value is one. An intersection cell has more than one neighboring cell that drains to it and its 

NIDP value is greater than one. 

The proposed algorithm initializes the flow accumulation matrix with the value of one. It first 

calculates the NIDP matrix from the flow direction matrix. The algorithm then traverses each cell 

within the flow direction matrix row by row and column by column, similar to the traversal 

algorithm. When a source cell c is encountered, the algorithm traces all downstream cells of c until 

it encounters an intersection cell i. During the tracing, the accumulation value of a given cell is 

added to the accumulation value of its immediate downstream cell. An interior cell has only one 

neighboring cell that drains to it and its final accumulation value is obtained when the tracing is 

done. The accumulation value of the intersection cell i is updated from this drainage path. 

However, cell i has other unvisited neighboring cells that drain to it and its final accumulation 

value cannot be obtained after the first round of tracing. The algorithm decreases the NIDP value 

of i by one. Cell i is visited again when other drainage paths that pass through it are traced. Once 

all of the drainage paths that pass through it are traced, cell i is treated as an interior cell and the 

final accumulation value of i is obtained correctly, and the last tracing process can continue the 

tracing after cell i is treated as an interior cell. The pseudocode of the proposed algorithm is shown 

in Algorithm 5 (Fig. 5). 

 

Fig. 5 Algorithm 5: compute the FlowAccu matrix from the FlowDir matrix using the proposed method. 

A worked example of the proposed algorithm is given in Fig. 6. A synthetic DEM with a size of 

3 rows by 4 columns, including its flow direction matrix, is shown in Fig. 6(a). The algorithm first 

computes the NIDP matrix (Fig. 6(b)) and initializes the flow accumulation matrix with 1 (Fig. 

6(c)). The algorithm then traverses the NIDP matrix from top to bottom and from left to right. It 



10 
 

encounters the first source cell H. The algorithm starts the first round of tracing from H and all 

downstream cells of H including D, C, and F, are traced (Fig. 6(d)). The accumulation value of 

each traced cell is increased by the accumulation of its immediate upstream cell. Because F is an 

intersection cell, the tracing stops and the NIDP value of F is decreased by 1. F is treated as an 

interior cell hereafter. The algorithm keeps traversing the remaining cells in the NIDP matrix and 

encounters the second source cell J. The algorithm starts the second tracing from J and all 

downstream cells including I, E, and A are traced (Fig. 6(e)). After the second tracing is done, the 

NIDP value of A is decreased by 1 and A is treated as an interior cell hereafter. In Fig. 6(f), the 

third tracing starts from cell L and all downstream cells including K, G, F, B, and A are traced. 

Note that cell F is being treated as an interior cell and that the third tracing does not stop when F is 

encountered. After the third tracing is done, no source cells remain and the traversing process is 

complete. The final flow accumulation matrix is obtained and shown in Fig. 6(f). 

 



11 
 

Fig. 6 A worked example of the proposed algorithm. (a) A 3×4 DEM with flow directions. (b) Initial NIDP matrix. 

(c) The flow accumulation matrix is initialized with one. (d) Cells H, D, C, and F are processed during the first 

round of tracing. The NIDP value of F is decreased by 1 and F is treated as an interior cell hereafter. (e) Cells J, I, 

E, and A are processed during the second round of tracing. The NIDP value of A is decreased by 1 and A is treated 

as an interior cell hereafter. (f) Cells L, K, G, F, B, and A are processed during the third round of tracing. The flow 

accumulation values of all cells are calculated after the tracing. 

3.2 Time complexity analysis 

Similar to the traversal algorithm, our algorithm utilizes the NIDP matrix. Compared with the four 

other algorithms that have a time complexity of O(N), our algorithm has a smaller constant 

coefficient before the time complexity. Our algorithm visits source and interior cells only once, 

and intersection cells are visited the same number of times as their initial NIDP values. Wang’s 

algorithm visits the cells the same number of times as our algorithm does but it requires a queue to 

hold the source cells. The manipulation of the queue incurs a performance loss. Jiang’s algorithm 

requires the manipulation of a stack and calculating the accumulation value of each cell needs to 

access all of its neighboring cells. The BTI-based algorithm requires two passes to process the 

cells and each cell is visited at least twice. The recursive algorithm is a process of depth-first 

search for the basin trees. It is a two-pass process. The first pass traces the drainage path from a 

starting cell to the leaves and the second pass computes the accumulation value from the leaves to 

the starting cell. In this regard, the recursive algorithm is similar to the BTI-based algorithm. 

Unlike the BTI-based algorithm, however, the recursive algorithm does not build the basin trees 

explicitly. The running time of a recursive algorithm is highly dependent on the optimization 

applied to it by the compiler. Different compilers may generate machine codes with considerable 

differences in running times. 

3.3 Memory requirement analysis 

All algorithms require an input flow direction matrix and an output flow accumulation matrix. 

Suppose that a DEM has N cells in it. Our algorithm requires an NIDP matrix. Because the NIDP 

value varies between 0 and 8, the NIDP matrix requires N bytes. Wang’s algorithm also requires 

an NIDP matrix. In addition, it requires a queue Q to hold source cells. Each cell that is pushed 

into Q has its row index and column index information, which requires 8 bytes for storage in the 

most general cases, where the number of rows and columns may exceed 70,000 and a 4-byte 

unsigned integer is needed to store the row index and column index separately. For our test DEMs 

in Section 4, about 33.71% of the total number of the cells averaged across all the test DEMs are 

source cells. On average, the initial space required by the queue is more than 2.5N bytes. Jiang’s 

algorithm does not use the NIDP matrix. Instead it uses a stack and requires at least 2.5N bytes as 

well. The BTI-based algorithm requires additional memory space to store the basin trees. Similar 

to Wang’s algorithm, each cell needs 8 bytes for its row index and column index. The additional 

total memory space required by the BTI-based algorithm is at least 8N bytes. The recursive 

algorithm requires the call stack to track the calls. The memory requirement of a recursive 

algorithm depends on many factors, including the compiler and the platform on which the 

algorithm runs, and it is difficult to make a quantitative estimate of its memory requirement. 



12 
 

4 Experimental results 

The five flow accumulation algorithms with O(N) time complexity, including Wang’s algorithm, 

Jiang’s algorithm, the BTI-based algorithm, the recursive algorithm, and our proposed algorithm, 

are implemented in C++. The source code is available for download on GitHub. The 3-m 

LiDAR-based DEMs of thirty counties in the state of Minnesota, USA are downloaded from the 

FTP site operated by the Minnesota Geospatial Information Office. The first 30 counties in 

Minnesota in alphabetic order are chosen for the experiments to avoid selection bias. The dataset 

is freely available for download by any user. On average, each county contains approximately 

3.96×108 cells in the 3-m DEM. Because of the large number of cells to be processed, we do not 

use ArcGISTM to derive the flow direction matrices. Instead, we use the algorithm proposed by 

Wang and Liu (2006) to fill the depressions and derive the flow direction matrices for all tested 

counties. The algorithms are tested on both Linux and Windows operating systems. The Linux 

system is a CentOS 6.5 operating system with an Intel Xeon E5-2403 1.80 GHz processor. All 

algorithms running on the Linux system are compiled using GCC 4.8.3 with O3 optimization. The 

Windows system is a 64-bit Windows 7 operating system with an Intel Xeon E5-2620 2.0 GHz 

processor and 56 GB RAM. All algorithms are compiled using Microsoft Visual Studio 2012 with 

the default optimization settings, such as Maximizing speed and Streaming SIMD Extensions. 

All five algorithms produce the same flow accumulation matrix for each tested DEM. Each 

flow direction matrix is completely loaded into the main memory for processing and the loading 

time is excluded from the total running time. Each algorithm is run multiple times and the average 

running time is used for analysis. Figures 7 and 8 plot the running times per 100 million cells of 

the five algorithms on Linux and Widows systems, respectively. On the Linux system, the average 

running times per 100 million cells are 14.36 seconds for Wang’s algorithm, 31.37 seconds for 

Jiang’s algorithm, 40.65 seconds for the BTI-based algorithm, 31.18 seconds for the recursive 

algorithm, and 10.40 seconds for our proposed algorithm. On the Windows system, the average 

running times per 100 million cells are 14.42 seconds for Wang’s algorithm, 15.90 seconds for 

Jiang’s algorithm, 18.95 seconds for the BTI-based algorithm, 10.87 seconds for the recursive 

algorithm, and 5.26 seconds for our proposed algorithm. There are three points that are worth 

noting about the running times. First, on both systems, our algorithm runs the fastest for all tested 

DEMs. The speed-up ratios of our proposed algorithm over the second fastest algorithm is about 

28% and 51% on the Linux and Windows systems, respectively. Second, the relative rankings of 

the five algorithms are different on the two systems. For example, on average, the recursive 

algorithm runs the second fastest in our experiment on the Windows system, whereas it runs the 

third fastest (almost as fast as the Jiang’s algorithm) on the Linux system. In addition, on both 

systems, Wang’s algorithm is faster than the BTI-based algorithm. This finding is different from 

the findings of Su et al. (2015), who report that the BTI-based algorithm is much faster than 

Wang’s algorithm, which is called the improved flow number matrix algorithm in their study. The 

difference in the running times may be caused partly by different details of the implementations. 

For example, Wang et al. (2011) originally use two collection structures for storing the source 

cells in two consecutive iteration steps and copy elements from one collection structure to the 

other structure. For the BTI-based algorithm, we pre-allocate a matrix of the same size as the input 



13 
 

DEM to avoid the repeated reallocation of the dynamic arrays for storing the basin trees. Third, in 

terms of the absolute amount of running times, with the exception of the Wang’s algorithm, other 

four algorithms generally run slower on the Linux system than on the Windows system. This may 

partially be attributed to the fact that the main frequency of the processor on which the Linux 

system runs is lower than that of the processor on which the Windows system runs. 

It is clear that the running times of the algorithms for calculating flow accumulations are subject 

to such settings as the hardware configurations, operating systems, compilation optimization 

options, and implementation details. Because our proposed algorithm has a smaller constant 

coefficient before the time complexity of O(N) than other four algorithms, our proposed algorithm 

is expected to run the fastest as long as similar settings are adopted for all algorithms. 

 

Fig. 7 Running time (seconds) versus total area (100 million cells excluding NODATA cells) of five algorithms on 

the Linux system for 3-m LiDAR-based DEM data of 30 counties in Minnesota, USA. 



14 
 

 

Fig. 8 Running time (seconds) versus total area (100 million cells excluding NODATA cells) of five algorithms on 

the Windows system for 3-m LiDAR-based DEM data of 30 counties in Minnesota, USA. 

5 Conclusions 

In this study, we provide an overview of existing algorithms for flow accumulation calculations 

from single-flow direction matrices and propose a fast and simple algorithm for calculating flow 

accumulation matrices. All algorithms for flow accumulation calculations that have O(N) time 

complexity are implemented in C++. Experiments are conducted on thirty LiDAR-based DEMs 

with a resolution of 3 m. 

Compared with the four existing algorithms for flow accumulation calculations that have O(N) 

time complexity, our algorithm runs substantially faster, requires less space than all non-recursive 

algorithms, does not require a collection structure, and is easy to understand and implement. 

Our proposed algorithm is only applicable to single-flow flow direction matrices. In future work, 

we will adapt the algorithm to make it applicable to multiple-flow flow direction matrices. 

Acknowledgement This work was supported by the National Natural Science Foundation of 

China (Grant No. 41671427) and the Fundamental Research Funds for the Central Universities 

(ZYGX2016J148). We thank the anonymous referees for their constructive criticism and 

comments. 

References 

Arge L, Chase J, Halpin P, Toma L, Vitter J, Urban D, Wickremesinghe R (2003). Efficient flow computation on massive 

grid terrain datasets. GeoInformatica, 7(4): 283–313 doi:10.1023/A:1025526421410 



15 
 

Bai R, Li T, Huang Y, Li J, Wang G (2015). An efficient and comprehensive method for drainage network extraction 

from DEM with billions of pixels using a size-balanced binary search tree. Geomorphology, 238(0): 56–67 

doi:10.1016/j.geomorph.2015.02.028 

Barnes R (2017). Parallel non-divergent flow accumulation for trillion cell digital elevation models on desktops or 

clusters. Environ Model Softw, 92(0): 202–212 doi:10.1016/j.envsoft.2017.02.022 

Barnes R, Lehman C, Mulla D (2014). An efficient assignment of drainage direction over flat surfaces in raster digital 

elevation models. Comput Geosci, 62(0): 128–135 doi:10.1016/j.cageo.2013.01.009 

Buchanan B P, Nagle G N, Walter M T (2014). Long-term monitoring and assessment of a stream restoration project in 

central New York. River Res Appl, 30(2): 245–258 doi:10.1002/rra.2639 

Choi Y (2012). A new algorithm to calculate weighted flow-accumulation from a DEM by considering surface and 

underground stormwater infrastructure. Environ Model Softw, 30(0): 81–91 doi:10.1016/j.envsoft.2011.10.013 

Freeman T G (1991). Calculating catchment area with divergent flow based on a regular grid. Comput Geosci, 17(3): 

413–422 doi:10.1016/0098-3004(91)90048-I 

Fu S, Liu B, Liu H, Xu L (2011). The effect of slope on interrill erosion at short slopes. Catena, 84(1–2): 29–34 

doi:10.1016/j.catena.2010.08.013 

Garbrecht J, Martz L W (1997). The assignment of drainage direction over flat surfaces in raster digital elevation models. 

J Hydrol (Amst), 193(1–4): 204–213 doi:10.1016/S0022-1694(96)03138-1 

Jenson S K, Domingue J O (1988). Extracting topographic structure from digital elevation data for geographic 

information system analysis. Photogramm Eng Remote Sensing, 54(11): 1593–1600 

Jiang L, Tang G, Liu X, Song X, Yang J, Liu K (2013). Parallel contributing area calculation with granularity control on 

massive grid terrain datasets. Comput Geosci, 60(0): 70–80 doi:10.1016/j.cageo.2013.07.003 

Nardi F, Grimaldi S, Santini M, Petroselli A, Ubertini L (2008). Hydrogeomorphic properties of simulated drainage 

patterns using digital elevation models: the flat area issue. Hydrol Sci J, 53(6): 1176–1193 doi:10.1623/hysj.53.6.1176 

Nobre A D, Cuartas L A, Hodnett M, Rennó C D, Rodrigues G, Silveira A, Waterloo M, Saleska S (2011). Height above 

the nearest drainage – A hydrologically relevant new terrain model. J Hydrol (Amst), 404(1–2): 13–29 

doi:10.1016/j.jhydrol.2011.03.051 

O’Callaghan J F, Mark D M (1984). The extraction of drainage networks from digital elevation data. Comput Vis Graph 

Image Process, 28(3): 323–344 doi:10.1016/S0734-189X(84)80011-0 

Ortega L, Rueda A (2010). Parallel drainage network computation on CUDA. Comput Geosci, 36(2): 171–178 

doi:10.1016/j.cageo.2009.07.005 

Qin C Z, Zhan L (2012). Parallelizing flow-accumulation calculations on graphics processing units—From iterative DEM 

preprocessing algorithm to recursive multiple-flow-direction algorithm. Comput Geosci, 43(0): 7–16 

doi:10.1016/j.cageo.2012.02.022 

Quinn P, Beven K, Chevallier P, Planchon O (1991). The prediction of hillslope flow paths for distributed hydrological 

modelling using digital terrain models. Hydrol Processes, 5(1): 59–79 doi:10.1002/hyp.3360050106 



16 
 

Su C, Yu W, Feng C, Yu C, Huang Z, Zhang X (2015). An efficient algorithm for calculating drainage accumulation in 

digital elevation models based on the basin tree index. IEEE Geoscience and Remote Sensing Letters, 12(2): 424–428 

doi:10.1109/LGRS.2014.2345561 

Wang L, Liu H (2006). An efficient method for identifying and filling surface depressions in digital elevation models for 

hydrologic analysis and modelling. Int J Geogr Inf Sci, 20(2): 193–213 doi:10.1080/13658810500433453 

Wang Y, Liu Y, Xie H, Xiang Z (2011). A quick algorithm of counting flow accumulation matrix for deriving drainage 

networks from a DEM. In: Proceedings on the Third International Conference on Digital Image Processing 

Yamazaki D, Baugh C A, Bates P D, Kanae S, Alsdorf D E, Oki T (2012). Adjustment of a spaceborne DEM for use in 

floodplain hydrodynamic modeling. J Hydrol (Amst), 436–437(0): 81–91 doi:10.1016/j.jhydrol.2012.02.045 

Yao Y, Shi X (2015). Alternating scanning orders and combining algorithms to improve the efficiency of flow 

accumulation calculation. Int J Geogr Inf Sci, 29(7): 1214–1239 doi:10.1080/13658816.2015.1027209 

Zhang H, Yang Q, Li R, Liu Q, Moore D, He P, Ritsema C J, Geissen V (2013). Extension of a GIS procedure for 

calculating the RUSLE equation LS factor. Comput Geosci, 52(0): 177–188 doi:10.1016/j.cageo.2012.09.027 

Zhou G, Sun Z, Fu S (2016). An efficient variant of the priority-flood algorithm for filling depressions in raster digital 

elevation models. Comput Geosci, 90: 87–96 doi:10.1016/j.cageo.2016.02.021 


