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Soil moisture plays a vital role inmaintaining the sustainability of dryland ecosystems. Accurately predicting soil
moisture scarcity (SMS) has an important interest of guidance to soil and water conservation. In this study, we
gathered a time series of soil moisture measurements throughout the growing season (from April to October)
in an area of approximately 100 km2 in a desert oasis of northwestern China. Sequential Gaussian simulation
was applied to investigate the spatial variability and scarcity of soil moisture across multiple land use types.
Soil moisture exhibited considerable spatial heterogeneity with different magnitudes of spatial dependence at
different times. Two hundred simulated realizations depicted the possible spatial variations of soil moisture in
the geographic space. SMS was characterized as the natural event that occurred when the spatial probability of
soil moisture not exceeding 0.15 cm3 cm−3 was greater than a critical threshold.With the increasing of probabil-
ity thresholds, the proportion of SMS locations in each land use decreased at different rates. Given the spatial
probability threshold of 0.6, 1.3–3.8% of the cultivated land, 2.6–5.2% of the forest land, 3.2–4.6% of the grassland,
and 2.7–7.4% of the shrub land were of SMS during themeasuring period. The newly cultivated land and the eco-
tone of desert and oasiswere themajor regions SMS occurred. Some soilmoisture conservationmeasures such as
precision irrigation should be taken to prevent the probable land degradation and agricultural disasters in these
areas. The prediction of SMS using stochastic simulation contributes to improving soil water management in the
oasis and provides a methodology reference for similar studies in risk analysis.

© 2017 Elsevier B.V. All rights reserved.
Keywords:
Soil moisture scarcity
Spatial pattern
Risk analysis
Stochastic simulation
Uncertainty
1. Introduction

Soil moisture is the major limiting factor for plant growth and plays
an irreplaceable role in maintaining the sustainability of ecosystems in
arid regions. A sensible policy of water resource management requires
a thorough understanding of soil moisture variations. Accurately man-
aging the variability of soil moisture has contributed greatly to numer-
ous issues such as constructing farmland shelterbelts (Wang et al.,
2008; Yan et al., 2015), preventing land degradation (Berndtsson
et al., 1996; Kairis et al., 2014), and improving irrigation efficiency
(Chang et al., 2015; Stabler, 2008). The actual procedure of soil and
water conservation practice depends upon the clear recognition of soil
moisture scarcity (SMS). To prevent ecological and agricultural damage
in a timely manner, adopting a technical and scientific approach is es-
sential to successfully forecast the dynamics of soil moisture and assess
the risk of SMS (Deng et al., 2011; Srivastava et al., 2013).
Soil moisture dynamics are controlled by a range of geophysical pa-
rameters in the field (e.g. topography, soil properties, vegetation densi-
ty, and regional climate) (Li et al., 2016; She et al., 2014). The estimation
of soil moisture at any unsampled location using a limited number of
sample measurements has the property to involve some degree of un-
certainty (Castrignanò and Buttafuoco, 2004). Encouragingly,
geostatistics based on Kriging and simulation provides effective ap-
proaches to predict the spatial distribution of soil properties. In recent
decades, stochastic simulation algorithms have been increasingly used
to field studies (Pachepsky and Acock, 1998; Pardo-Iguzquiza and
Chica-Olmo, 2008; Van Meirvenne and Goovaerts, 2001; Yao et al.,
2013), especially in the situationwhere the spatial variation of themea-
sured field must be preserved (Goovaerts, 1999). This technique can
avoid the smoothing effects of Kriging estimators (Deutsch and
Journel, 1998) and provide more reliable simulated results through
computing plenty of possible realizations of the unknown spatial distri-
bution (Delbari et al., 2009; Leuangthong et al., 2004). Not only that, the
uncertainty of estimation for the soil property in question at unsampled
locations can be assessed with probability modeling through post-
processing of the set of alternative realizations, which offers newoppor-
tunities for risk evaluation (Goovaerts, 1997). Thus, quantizing the
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Fig. 1. Location of the study area in Gansu Province of China (a) and Linze County (b), and field capacities of the sampling points on the land use map (c).
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uncertainty of soil moisture using conditional stochastic simulation
makes it possible to predict SMS. The feasibility of applying this method
to the prediction of soil moisture has been confirmed in previous re-
ports (Bourennane et al., 2007; Castrignanò and Buttafuoco, 2004).
Some researchers satisfactorily delineated soil vulnerability to erosion
by assessing the uncertainty of soil moisture in a few areas (Afrasiab
and Delbari, 2013; Delbari et al., 2009). Actually, there are notmany ap-
plications of geostatistical simulation in risk analysis of SMS in soil
water management. The current study, therefore, attempted to predict
SMS using stochastic simulation and then expand the output to actual
practice. This may improve the utility of soil water management and
offer a reference for decision-making.

We gathered a time series of soil moisture measurements through-
out the growing season in an oasis area of northwestern China. The spa-
tial patterns of soilmoisturewere investigatedwith sequential Gaussian
simulation (SGS), one of the most proposed simulation algorithms for
continuous variables. SMS was defined as the natural event that oc-
curredwhen the spatial probability of soil moisture content not exceed-
ing 60% of the field capacity was greater than a critical probability
threshold. The primary objectives of this study were: i) to reveal the
spatial variations of soil moisture at different times, ii) to predict SMS
and explore its seasonal activities.
Table 1
The basic information of soil properties and vegetation composition in each land use.

Land use Clay
(b0.002 mm)
(%)

Silt
(0.002–0.05 mm)
(%)

Sand
(N0.05 mm)
(%)

Bulk
density
(g/cm3)

Vegetation

Cultivated
land

27.71 39.01 33.24 1.49 Wheat (Triticum

Forest land 17.22 21.10 61.43 1.53 Poplar (Populus
angustifolia Lin

Shrub land 11.95 15.49 72.34 1.55 Haloxylon amm
Grassland 26.69 40.21 32.85 1.50 Setaria viridis (

Agropyron crist
Desert 5.39 6.21 88.08 1.65 Halogeton arach

etc.
2. Materials and methods

2.1. Study area

The study was conducted in an area of approximately 100 km2

(100°05′32″–100°10′01″E, 39°12′35″–39°23′28″N) in Linze County,
Gansu Province, China (Fig. 1). Linze County is in the middle reaches
of the Heihe River and within a representative piedmont plain. This
area has a typical continental arid climate with strong solar radiation,
low precipitation, and high evaporation. Themean annual precipitation
is 117 mm for many years, approximately 65% of which falls between
July and September. The mean annual pan evaporation is around
2365 mm. The mean annual air temperature is 7.6 °C, with minimum
and maximum temperatures of −27.8 °C in January and 39.1 °C in
July, respectively. The regional soil is grey-brown desert soil with eolian
sand on themargins of the oasis (Liu et al., 2010). The growing season is
fromMay to October, and the frost-free period is about 165 days (Zhao
and Liu, 2010).

The Heihe River originates in the Qilian Mountains and supplies
most of the water for the oasis ecosystem. The land use types of the
study area are diverse, mainly including cultivated land, forest land,
shrub land, grassland, and desert (Fig. 1c) (10.3972/heihe.100.2014.
aestvum Linn.), maize (Zea mays Linn.), cotton (Gossypium hirsutum Linn.), etc.

gansuensis C. Wang et H. L. Yang), elm (Ulmus pumila L.), sand jujube (Elaeagnus
n.), etc.
odendron (C. A. Mey.) Bunge, Tamarix chinensis Lour., Calligonum arborescens Litv., etc.
L.) Beauv., Phragmites australis (Cav.) Trin. ex Steud., Leymus secalinus (Georgi)Tzvel.,
atum (L.) Gaertn., etc.
noideus Moq., Bassia dasyphylla (Fisch. et Mey.) O. Kuntze, Salsola passerina Bunge,
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Fig. 2. Daily precipitation and evaporation through the measurement period.
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db). Most of the available lands bordering the desert are newly cultivat-
ed. Table 1 shows the basic information of soil properties and vegetation
composition for each land use. The cultivated lands are irrigated with
water from the Heihe River as well as the groundwater.

2.2. Soil moisture measurements

A grid sampling scheme was adopted for a good coverage over the
study area (Fig. 1c). The rectangular space (20 × 5 km) was sectioned
into a grid of 1 × 1 km squares, and 126 sampling points were initially
determined. Eleven of these points, however, were absent due to the oc-
currence of roads, buildings, reservoirs, and river channels. An alumi-
num neutron-probe access tube was installed at each location. Soil
moisture was measured at the depth of 0–100 cm using a neutron
probe. Neutron counts were recorded at depth increments of 10 cm
and then were converted to volumetric soil moisture contents with a
calibration curve. Taking into account the escape of neutrons from the
surface soil (Chanasyk and Naeth, 1988; Evett et al., 2003), 0–20 cm
was treated differently from 20–100 cm when doing the calibration of
neutron probe. The depth-specific calibration has been proven to be
highly valid for the profile by Li (2014). The volumetric soil moisture
content at location i and depth j, wi,j (cm3 cm−3), was calculated by:

wi; j 0−20 cmð Þ ¼ 0:978CRi; j−0:033 R2 ¼ 0:89;pb0:001
� �

ð1Þ

wi; j 20−100 cmð Þ ¼ 0:690CRi; j−0:031 R2 ¼ 0:92; pb0:001
� �

ð2Þ

where CR is slow-neutron counting rate, i.e., the ratio of recorded to
standard count.

Themonitoring of soilmoisturewas carried out in themiddle of each
month from April to October in 2013, a normal year in meteorology.
Fig. 2 shows the daily precipitation and evaporation through the mea-
surement period.
Table 2
Descriptive statistics of soil moisture measurements (cm3 cm−3) throughout the growing seas

Month Minimum Maximum Mean

April 0.01 0.55 0.16
May 0.01 0.53 0.15
June 0.01 0.41 0.15
July 0.02 0.53 0.17
August 0.01 0.47 0.17
September 0.02 0.49 0.17
October 0.01 0.47 0.16

a SD, standard deviation; CV, coefficient of variation.
b The significance level of K—S test is 0.05. The capital letter N indicates that the data is not
2.3. Sequential Gaussian simulation

Sequential Gaussian simulation can be characterized as simulating
Gaussian random functions using sequential simulation algorithm.
Based on the multi-Gaussianary assumption of a random function
model, SGS randomly draws a simulated value at each location from
an estimated conditional cumulative distribution function (ccdf). The
ccdf is determined by the kriging mean and variance computed from
the neighborhood information. When running the SGS, a prior trans-
form of the original data into a Gaussian distribution is necessary and
can be normally performed by the normal score transformation
(Goovaerts, 1997; Remy et al., 2009).

For a Gaussian continuous variable Z(u), the experimental
semivariogram γ(h) is calculated by:

γ hð Þ ¼ 1
2N hð Þ ∑

N hð Þ

i¼1
z uið Þ−z uiþhð Þ½ �2 ð3Þ

where N(h) is the number of data pairs separated by distance h, z(ui)
and z(ui + h) are the sample values for Z(u) at location ui and ui + h, re-
spectively. The best fitted theoretical functionmodel can be determined
using cross validation. Generally, the model is described by the param-
eters of nugget value (C0), structural variance (C), still (C0 + C), and
range (A). The nugget coefficient (C0 / (C0 + C)) indicates the degree
of spatial dependence that can be divided into three levels: b0.25,
strong; 0.25–0.75, medium; N0.75, weak (Cambardella et al., 1994).

Based on the semivariogram model, the SGS algorithm can be de-
tailed by the following procedure (Remy et al., 2009):

1) Determine a random path through the grid nodes.
2) At each node u, do the following:
• Define a search ellipsoid to obtain conditional information (raw
data and previously simulated values).

• Estimate the mean and variance of the local ccdf as a Gaussian dis-
tribution using Kriging with the semivariogram model, γ(h).

• Draw a random value from the ccdf and add the simulated value to
the data set.

3) Repeat this process until all nodes are simulated.
Repeating these sequential steps with different random paths can

provide multiple realizations of the spatial distribution of Z(u) in the
space of interest. In this study, to get a precise and accurate probability
calculation, the SGS algorithmwas conducted two hundred times in the
Stanford Geostatistical Modeling Software (SGeMS) package.

2.4. Uncertainty of soil moisture

The simulations of soil moisture have the same probability of occur-
rence then the whole set of simulations gives a measure of uncertainty.
The uncertainty of soil moisture at any unsampled location can be
assessed by probabilistic calculation (Delbari et al., 2009; Goovaerts,
2001). Suppose there are L amount of simulated realizations. The prob-
ability of soil moisture z(u) not exceeding a critical threshold zt at the
on.

SDa CV Kurtosis Skewness K—Sb

0.14 0.85 −0.45 0.64 N
0.13 0.84 −0.66 0.58 N
0.12 0.81 −1.17 0.40 N
0.12 0.72 −0.51 0.50 N
0.13 0.77 −1.13 0.37 N
0.13 0.76 −1.20 0.36 N
0.12 0.77 −0.96 0.52 N

in Gaussian distribution.

http://dx.doi.org/10.3972/heihe.100.2014.db


Fig. 3. The average of differences in soil moisture content at each lag distance in different directions.
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location u, i.e., Prob[z(u) ≤ zt], is calculated by the following equation:

Prob z uð Þ≤zt j nð Þ½ � ¼ 1
L
∑
L

l¼1
i lð Þ u; ztð Þ ð4Þ

where |(n) expresses conditioning to the local information (n point
data). The indicator value i(l)(u, zt) is 1 if the simulated z-value does
not exceed zt, and 0 otherwise. With this equation, a probability map
can be drawn to visualize the possibility of soil moisture being less
than zt.

For applications such as soil water management, it would make
more sense to measure the joint probability about soil moisture status
at several locations taken together than tomeasure the individual prob-
ability at a single location. Given a critical threshold of individual prob-
ability Pi, a specific area consisting of J amount of locations can be
determined from the probability map by the provision
Prob[z(u) ≤ zt] N Pi. The spatial probability that soil moisture contents
at the J locations are jointly not great than zt can be calculated by:

Prob z u j
� �

≤zt ; j ¼ 1;…; Jj nð Þ� � ¼ 1
L
∑
L

l¼1
∏
J

j¼1
i lð Þ u j; zt

� � ð5Þ

where L is the total number of realizations, and i(l)(uj, zt) is 1 if
z(l)(uj) ≤ zt, and 0 otherwise.
2.5. Soil moisture scarcity

The critical threshold of soil moisture zt was given as 0.15 cm3 cm−3

corresponding for the study area to 60% of the mean field capacity. 60%
field capacity has often been regarded as the lower limit of soil moisture
content in irrigation management (Lamm and Rogers, 2015; Zhang
et al., 2008). The field capacity (Fig. 1c) was measured using Wilcox
method with the undisturbed soil samples collected by cutting ring
(Duan et al., 2010; Hanks et al., 1954).

Soil moisture scarcity can be considered as a natural risk event at a
time. We defined that if the spatial probability of soil moisture not ex-
ceeding the threshold of 0.15 cm3 cm−3 was higher than a critical
threshold Ps, there was an occurrence of SMS in the study area. The
risk of SMS was analyzed under a range of probability thresholds
(0.5 ≤ Ps ≤ 0.95).
3. Results

3.1. Exploratory data analysis

Table 2 shows the descriptive statistics of soil moisture for each
month. The mean soil moisture varied slightly from 0.15 to
0.17 cm3 cm−3 throughout the growing season. The maximum and
minimum ranges were 0.01–0.55 cm3 cm−3 in April and
0.01–0.41 cm3 cm−3 in June, respectively. Soil moisture was typically
characterized by high spatial heterogeneity over the study area, indicat-
ed by the coefficients of variation (CVs) varying between 0.72 and 0.85.



Fig. 4. Anisotropic and isotropic semivariograms of normal score transformed data. The bested fitted model of isotropic semivariogram for each set of data is spherical (solid line).
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The spatial variabilitywas higher in spring (April andMay) than in sum-
mer (June, July, and August) and autumn (September and October).

As Gaussian simulation algorithm requires a multi-Gaussian frame-
work, the normality of soil moisture values was examined by
Kolmogorov—Smirnov test. All the data sets were positively skewed
and did not follow normal distribution (p b 0.05) (Table 2). Thus, the
raw data were transformed into Gaussian variables using a normal
score transformation (Deutsch and Journel, 1998) and assuming a
multi-normal distribution. The simulation results were back-
transformed afterwards. Moreover, we calculated the differences in
soil moisture contents between any two locations within about half
the sampling extent. The average of the differences at each lag distance
for different directions (0, 45, 90 and 135°) is presented in Fig. 3. No
Table 3
Summary statistics over the whole simulated realizations of soil moisture (cm3 cm−3).

Month Minimum Maximum Mean SDa CV

April 0.01 0.55 0.16 0.13 0.81
May 0.01 0.53 0.15 0.12 0.80
June 0.01 0.41 0.15 0.11 0.73
July 0.02 0.53 0.17 0.11 0.65
August 0.01 0.47 0.17 0.12 0.71
September 0.02 0.49 0.17 0.12 0.71
October 0.01 0.47 0.15 0.11 0.73

a SD, standard deviation; CV, coefficient of variation.
significant spatial trends existed and the statistic features are deemed
to be not against the second order stationary assumption.
3.2. Stochastic simulations of soil moisture

Anisotropic semivariances of soil moisture were calculated in the di-
rections of 0, 45, 90 and 135°with an angular tolerance of±22.5°. There
were no significant directional behaviors, as evidenced bymild discrep-
ancies resulting from the small number of data pairs. Therefore, the iso-
tropic semivariograms were computed and fitted by the commonly
used geostatistical models (spherical, exponential, and Gaussian)
(Fig. 4). Cross validation showed that the spherical model was optimal
for all the data sets. Soil moisture had different degrees of spatial depen-
dence at different times. All the nugget coefficients were between 0.25
and 0.75 except April, suggesting that the spatial dependence was me-
dium from May to October. The nugget coefficient of 0.22 indicated a
strong spatial dependence in April. The ranges of soil moisture varied
between 4210 and 7570mduring the study period. Summer had higher
nugget coefficients and smaller ranges than spring and autumn.

Two hundred realizations of soilmoisture spatial patternswere gen-
erated each month on a 50 × 50 m grid using SGS. The performances of
nodal simulation relied on the simple Kriging estimator. The realization
number was determined in the light of the overall error variances of
simulated data, which tended to be constant after performing the algo-
rithm 50 times. Table 3 shows the summary statistical characteristics
over the whole data set of simulations. Compared with the observed



Fig. 5. Possible spatial distributions of soil moisture using sequential Gaussian simulation. One randomly selected realization is presented for each month.
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data (Table 2), the simulated results had nearly identical means (0.15 to
0.17 cm3 cm−3) and relatively lower CVs (0.65 to 0.81). Levene's test
was carried out at the 0.05 level of significance to examine the homoge-
neity of variance between the two distributions for the monthly data.
No heteroscedasticity was detected.

The set of individual realizations provided exhaustive descriptions of
the spatial distribution of soil moisture over the study area. Fig. 5 shows
one randomly selected realization for each month. Averaging all the
realizations provided the expected estimates of soil moisture, i.e., the
E-type values. The time series of E-type maps depicted the overall spa-
tial patterns of soil moisture (Fig. 6).

3.3. Prediction of soil moisture scarcity

With the given threshold of 0.15 cm3 cm−3, the uncertainty of soil
moisture was expressed by Prob[z(u) ≤ 0.15 cm3 cm−3] at any particu-
lar location based on the post-processing of SGS. The probabilities of soil
moisture not exceeding 0.15 cm3 cm−3 were mapped (Fig. 7). High
probability values focused on the northeastern and south-central parts
of the study area, corresponding to the low soil moisture locations in
the E-type maps (Fig. 6).

According to thedefinition of SMS, soilmoisturewas of scarcity at lo-
cationswhere the spatial probabilitywas higher than a critical probabil-
ity threshold Ps. Fig. 8 shows the proportion of SMS grid units in each
land use under different Ps values. Desert was abandoned due to the
lack of vegetation. The proportion of SMS locations gradually declined
with the increasing of Ps. Taking Ps = 0.6 as an example, SMS locations
occupied 3.8%, 4.1%, 3.0%, 2.2%, 3.4%, 3.3% and 5.2% of the entire study
area from April to October, respectively. The ranges of SMS percentages
in cultivated land, forest land, grassland, and shrub land throughout the
growing season were 1.3–3.8%, 2.6–5.2%, 3.2–4.6%, and 2.7–7.4%,
respectively.

4. Discussion

4.1. Spatial distribution of soil moisture

Driven by the complex interaction of local controls such as soil, veg-
etation, and irrigation and nonlocal controls such as climate and runoff
(Vereecken et al., 2014), soil moisture exhibited great heterogeneity
with medium or strong spatial dependence in the geographic space.
Semivariogram analysis showed that the spatial dependence of soil
moisture was higher in spring and autumn than in summer. The result
wasmainly because irregular rainfall, high evapotranspiration, frequent
watering and grazing enhanced the random variations from June to Au-
gust. The seasonal changes of spatial organizationwere also observed by
Hu et al. (2011) for the land surface soil moisture in a semiarid area.
They found a positive relationship between themagnitude of spatial de-
pendency and soil moisture status. But in this study, there was a lack of
significant correlation between the mean soil moisture and the
variogram parameters. This disagreement can be attributed to the dif-
ference of soil layer thickness. Deeper soil moisture is less to be affected
by the external disturbance from land surface.

The numerous SGS realizations gave a description of the possible
spatial patterns of soil moisture for each month (Fig. 5), whereas E-
type maps depicted the overall variation of soil moisture (Fig. 6). As
can be seen from these maps, low soil moisture values concentrated in
the sandy deserts and their extensionswhere eolian sands accumulated
due to continuous wind erosion (Liu et al., 2010; Su et al., 2004). Few
water sources and strong evaporations facilitated the loss of soil



Fig. 6. E-type maps of soil moisture for each month. The E-type values were calculated by averaging the whole set of realizations.

Fig. 7. Probability maps of soil moisture not exceeding 0.15 cm3 cm−3.
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Fig. 8. Proportion of SMS locations in each land use under different spatial probability thresholds.
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moisture in these areas. High soil moisture values were mostly located
in the cultivated lands because of intermittent irrigation and high
water holding capacity of finer-textured soils (Table 1) formed under
long-term cultivation (Li and Shao, 2013; Su et al., 2009; Zhao et al.,
2010).Moreover, although the stochastic simulation results highlighted
spatial variations, the overall spatial patterns of soil moisture from April
to October had a certain similarity (Fig. 6). This persistence of spatial
patterns over time has often been called temporal stability (Ivanov
et al., 2010; Jacobs et al., 2004; Mohanty and Skaggs, 2001; Vachaud
et al., 1985). Zhang and Shao (2013) and Li and Shao (2015) found
that soil texture, bulk density, soil organic carbon, and vegetation
cover were the determinants of the time-stable behaviors in the desert
oasis.

4.2. Risk assessment of soil moisture scarcity

The probability of soil moisture not exceeding 0.15 cm3 cm−3

(Fig. 7) provided a measure of the soil moisture uncertainty at a single
location. Lower soil moisture locations generally had higher probability
values. Based on the probability maps, the locations where SMS existed
were easily determined with a given spatial probability threshold of Ps.
The SMS areas concentrated in the newly cultivated land and the eco-
tone of desert and oasis. Choosing the appropriate probability threshold
is a subjective decision. By now no unified criterion has been made to
identify the critical threshold in literature. In this case, if Ps N 0.8, the
SMS areas (Fig. 8) are too small to be managed in practice. So a lower
spatial probability such as 0.6 and 0.7 might be more applicable.
Delbari et al. (2009) argued that the probability threshold of 0.6was rel-
atively confidential to delineate vulnerable areas in erosion hazard. If
Ps = 0.6, 1.3–3.8% of the cultivated land, 2.6–5.2% of the forest land,
3.2–4.6% of the grassland, and 2.7–7.4% of the shrub landwere suffering
from SMS throughout the growing season. Although the percentages of
SMS areaswere small, they were key indicators of the eco-environment
statement of health.

To prevent land degradation and maintain the sustainability of the
agroecosystem, it is imperative to stay on guard against soil moisture
scarcity in the oasis. We investigated the irrigation amount in the
newly cultivated lands during the study period. The newly cultivated
land was irrigated for 9–10 times by conventional flood irrigation with
a water quota of approximately 110 mm each time. Generally, the irri-
gation activities started in early May and ended in early September at
the intervals of 12–14 days in the light of soil wetness determined em-
pirically by local farmers. The extensive irrigation restrained the occur-
rence of widespread SMS at the expense of water resources, but small
areas of SMS could not be avoided. Ji et al. (2007) suggested that a
higher frequency of irrigation with fewer amounts would be more suit-
able in this area. Furthermore, forest in themarginal oasis needs to be of
concern for the ecological benefit of windbreaks in preventing sands
moving toward the fertile land. If possible, the forest land in the oasis
margin should be watered. Some protection measures can still be
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considered to combat desertification for shrub land and grassland de-
spite the high drought resistance capability of desert plants (Zhao and
Cheng, 2002). Controlling the intensity of grazing and curtailing unrea-
sonable land conversion from shrub land and grassland to cultivated
land might be wise moves.
5. Conclusions

The spatial variations of soil moisture were analyzed using se-
quential Gaussian simulation (SGS) with a time series of measure-
ments throughout the growing season in an oasis. Two hundred
realizations described the possible spatial distributions of soil
moisture for each month. Averaging the overall realizations pro-
vided the expected spatial patterns of soil moisture over the
study area. We defined soil moisture scarcity (SMS) as a natural
event that occurred when the spatial probability of soil moisture
not exceeding 0.15 cm3 cm−3 was higher than a critical threshold,
and then forecasted the occurrence of SMS under different regula-
tory probabilities. Spatial analysis showed that SMS locations fo-
cused on the newly cleared land and the ecotone of desert and
oasis. The proportion of SMS locations in each land use declined
at different rates with the increasing of probability thresholds.
Considering the values of 0.6 as the critical threshold of spatial
probability, 1.3–3.8% of the cultivated land, 2.6–5.2% of the forest
land, 3.2–4.6% of the grassland, and 2.7–7.4% of the shrub land
were of SMS over the measuring period. To prevent the probable
damage to the oasis ecosystem, some protection measures should
be considered in the SMS locations during the decision-making
processes.

Stochastic simulation is an effective tool to assess the risk of
SMS. The prediction of SMS is a stimulus for improving the irriga-
tion efficiency and soil water management in arid regions. The
main difficulty issue, however, is to decide on the appropriate
probability threshold in practical applications. The utility of out-
puts using an empirical threshold requires further examination in
future studies.
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