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Abstract

Key message Prince Rupprecht’s Larch from the

Loess Plateau takes up and assimilates a greater pro-

portion of N as NO3
2, particularly at neutral pH,

whereas Chinese Fir assimilates a greater proportion of

N as NH4
1, particularly at low pH levels.

Abstract The effects of pH on nitrate and ammonium

uptake and assimilation in two coniferous species were

compared. Prince Rupprecht’s Larch (Larix principis-rup-

prechtii Mayr) grows on the loess plateau in alkaline soils

with low available nitrogen (N), whereas Chinese Fir

(Cunninghamia lanceolata) grows in acidic soils. In the

present study, the net fluxes in ammonium (NH4
?) and

nitrate (NO3
2) were measured using a non-invasive micro-

electrode ion flux measurement system, and the expression

of NH4
? and NO3

2 transporters (AMTs and NRTs, respec-

tively) as well as H?-ATPase was examined to provide

insights into the N uptake mechanisms in Prince Rupprecht’s

Larch and Chinese Fir. The enzyme assays involved in N

assimilation were also determined. For Prince Rupprecht’s

Larch, low pH (pH 4) resulted in a decrease in net ammonium

uptake, which remained unchanged in Chinese Fir. Net

nitrate uptake in Prince Rupprecht’s Larch and Chinese Fir

was much lower in soils with pH 4 relative to those with pH 7.

Low pH significantly decreased the H?-ATPase activity and

the expression level of NRTs in roots of Prince Rupprecht’s

Larch. However, the expression level of AMTs in Prince

Rupprecht’s Larch was significantly higher at pH 7 than at

pH 4. The H?-ATPase activity in roots of Chinese Fir

remained unaltered in response to changes in pH, and the

transcript abundances of AMTs and NRTs were down-regu-

lated by low pH. Low pH decreased N assimilation in both

conifer species with the exception of NH4
? assimilation in

Chinese Fir, which displayed higher glutamine synthetase

(GS) and glutamate synthetase (GOGAT activities) at low

pH. Prince Rupprecht’s Larch from the Loess Plateau takes

up and assimilates a greater proportion of N as NO3
2, par-

ticularly at neutral pH, whereas Chinese Fir assimilates a

greater proportion of N as NH4
?, particularly at low pH

levels. This study contributes to our understanding of nitro-

gen metabolism mechanisms in response to pH changes.

Keywords Prince Rupprecht’s Larch � Chinese Fir � pH �
Nitrogen uptake � Nitrogen assimilation � Nitrate

transporters � Ammonium transporters � Ion flux

Introduction

Spatial and temporal variations in soil N availability have

promoted plant adaptations from the molecular to the

ecosystem level to address challenges of limited N
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availability (Nacry et al. 2013). Although both NH4
? and

NO3
2 ions can be utilized by plants, they have different

energetic and biochemical characteristics that affect

assimilation, resulting in different net fluxes and different

NH4
?/NO3

2 preferences in specific plants (Luo et al. 2013a,

b). N metabolism involves the uptake, transport, assimila-

tion and utilization of N for amino acid biosynthesis and

ultimately growth. NO3
2 is converted to NH4

? by NR and

NiR. After direct uptake or conversion from NO3
2, NH4

? is

assimilated to glutamine and glutamate via GS and

GOGAT, and the products of the GS/GOGAT pathway are

required for the biosynthesis of other nitrogenous com-

pounds. Each step of N metabolism can be influenced by

species and environmental factors (soil type, water avail-

ability, salt and climate) (Cousins and Bloom 2003; Dong

et al. 2001; Luo et al. 2013a, b; Zhang et al. 2014). For

instance, some maize varieties displayed a higher capacity

to absorb and utilize N than the others (Machado and

Fernandes 2001)). Populus simonii took up more NH4
?

after acclimation to moderate salinity (Zhang et al. 2014).

However, little information is available on responses of N

metabolism in woody plants to pH changes.

In soils, external pH influences the electrical potential

difference between the plasma membrane and surrounding

environment (Reid and Hayes 2003). In root cell mem-

branes, pH can also influence the amount and activity (Zhu

et al. 2009) of H?-ATPase protein and proton permeability

(Yan et al. 1998) and polarization state (Babourina et al.

2001) of the plasma membrane. These effects directly

influence the uptake of inorganic N ions.

The influence of pH on N uptake and assimilation is

complex; therefore, results vary among studies investigating

this phenomenon. The optimum pH for maximum NO3
2

uptake ranges from 8.0 in Arabidopsis (Doddema and Tel-

kamp 1979) and 5.0 in Typha latifolia (Brix et al. 2002) to

4.5–5.0 in soybean (Glycine max) (Vessey et al. 1990) and 4.0

in barley (Hordeum vulgare) (Rao and Rains 1976). The

optimum pH required for NH4
? uptake ranges from 6.5 in T.

latifolia (Brix et al. 2002) and 6.0 in soybean (Vessey et al.

1990) to 4.0 in Eucalyptus nitens (Garnett and Smethurst

1999). pH also affects N assimilation, with higher nitrate

reductase (NR) in maize seedlings observed when the seed-

lings were grown at nutrient pH 6.3 than at pH 4.3 (Shankar

et al. 2001). However, pH did not have a significant effect on

glutamine synthetase (GS) in either rice or tomatoes grown in

a medium with NH4
?–N as the N source (Magalhäes and

Huber 1989). These studies provide a starting point; never-

theless, the direct effects of pH on NH4
? and NO3

2 rate uptake

and assimilation in conifer roots are poorly understood.

Prince Rupprecht’s Larch grows in NO3
2-rich alkaline

soils (pH 7–8) on the Loess Plateau, whereas Chinese Fir

grows in southern China forests, where soils are typically

acidic and rich in NH4
?. Soils on the Loess Plateau in

northwest China are alkaline and low in available N. NH4?

levels are particularly low, making NO3
2 the most available

form of N in this region. Moreover, timber production and

forestry in North and South China rely on Prince Rup-

precht’s Larch and Chinese Fir, respectively, and conifers

that grow in these regions are expected to exhibit different

N uptake and assimilation strategies based on the soil pH.

The mechanisms of NH4
? and NO3

2 transport across the

root membrane differ, and the optimum pH levels for the

uptake of these two ions vary. NH4
? may enter root cells

passively by traveling through a potential uniporter system

and following the electrochemical potential gradient across

the plasma membrane; however, NH4
? must be actively

transported out of root cells and requires the help of PM H?-

ATPase during efflux (Britto and Kronzucker 2006). NO3
2 is

transported into root cells via H?-coupled symporters

assisted by PM H?-ATPase and may exit passively into the

apoplast during efflux (Britto and Kronzucker 2006).

In this study, we employed the non-invasive micro-test

technique (NMT), which measures ion fluxes by moving an

ion-selective microelectrode between two positions near

the live tissue in situ. This technique provides high spatial

(\2 lm) and temporal resolution (approximately 5 s) (for

theory, see Shabala and Bose (2012)) and is a powerful tool

in the investigation of ion fluxes in plant roots. We also

examined the expression of NH4
? and NO3

2 transporters

(AMTs and NRTs, respectively) as well as H?-ATPase to

provide insights into the N uptake mechanisms in Prince

Rupprecht’s Larch and Chinese Fir. Our hypothesis stated

that the response of N metabolism in Chinese Fir adapted

to acidic forest soils would be less impacted by pH pre-

treatment relative to the uptake and assimilation of N in

Prince Rupprecht’s Larch. Our objectives were to (1)

investigate the NH4
? and NO3

2 fluxes and the expression of

NH4
? and NO3

2 transporters (AMTs and NRTs, respec-

tively) in fine roots of two conifer species exposed to dif-

ferent pH levels and (2) compare the uptake and utilization

of NH4
? and NO3

2 in two conifer species exposed to dif-

ferent pH levels. We expected that Prince Rupprecht’s

Larch would take up and assimilate a greater proportion of

N as NO3
2, particularly at neutral pH, whereas Chinese Fir

would assimilate a greater proportion of N as NH4
?, par-

ticularly at low pH levels. This study is valuable because it

improves our understanding of N uptake and utilization

mechanisms in response to pH changes in conifers.

Materials and methods

Plant cultivation

Seeds of Prince Rupprecht’s Larch and Chinese Fir were

sown in 500 ml pots filled with moistened vermiculite in a
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climate-controlled growth chamber that provided a day/

night temperature of 22/20 �C, relative humidity of

60/70 %, and irradiance of 300 lmol m-2 s-2. Five seeds

of each species were sown per pot, and the seeds germi-

nated after approximately 10 days. The nutrient solutions

were adjusted to pH 4 or 7 and contained 100 lM NH4-

NO3, 100 lM KH2PO4, 100 lM MgSO4, 100 lM CaCl2,

100 lM Na2SO4, 100 lM EDTA�FeNa, 5 lM MnSO4,

1 lM ZnSO4, 1 lM CuSO4, 30 lM H3BO3, and 0.5 lM

H2MoO4. Three pots of seedlings per species were allo-

cated to each pH treatment, and nutrient solutions were

applied every 2 days. All measurements were performed

on healthy seedlings 8 weeks after germination.

Measurement of growth parameters

The net photosynthetic rate was measured from 9:00 to

11:00 h using a portable photosynthesis system (Li-Cor-

6400; Li-Cor, Inc., Lincoln, NE, USA) with an attached

LED light source (500 lmol photon m-2 s-1). The CO2

concentration in each chamber was 400 lmol mol-1, and

the air flow was 500 lmol s-1. The height of the main

shoot of each plant was measured with a ruler.

The roots of each plant were harvested, and the fresh

weight was recorded. Roots were excised from the root

system, scanned, and analyzed with a WinRHIZO root

analysis system (WinRHIZO version 20007, Regent

Instruments Canada, Montreal, Canada). Harvested roots

and leaves were then dried for 72 h at 80 �C in an oven and

cooled in a desiccator to calculate dry mass.

Measurements of NH4
1 and NO3

2 fluxes at the root

surface

To monitor the net fluxes of NH4
? and NO3

2 in the roots,

six white fine roots (0.20 ± 0.01 mm in diameter,

50.0 ± 1.1 mm in length) were selected and excised from

the root system of each plant (ca. 10 weeks). Measure-

ments of ion fluxes along the root tips were performed non-

invasively using the scanning ion-selective electrode

technique (SIET, system BIO-IM; Younger USA, LLC.,

Amherst, MA, USA), and the work was conducted at

Xuyue Science and Technology Co. Ltd. (Beijing, China).

The method’s principles and application are described in

detail by Xu et al. (2006). Briefly, silanized glass micro-

pipettes with 2–4 lm apertures were first filled with a

backfilling solution (100 mM NH4Cl for the NH4
? elec-

trode; 10 mM KNO3 for the NO3
- electrode).The micro-

pipettes were then front-filled with 15–50 lm columns of

selective liquid ion-exchange cocktails (NH4
?LIX,

#09879, Sigma; NO3
2 LIX, #72549, Sigma). An Ag/AgCl

wire electrode holder (XY-DJGD, Younger USA) was

inserted into the back of the electrode to make electrical

contact with the electrolyte solution. YG003-Y05

(Younger USA) was used as the reference electrode. The

microelectrodes were calibrated (for NH4
?: 0.05 and

0.50 mM NH4Cl as well as other compounds used in the

measuring solution (see below); for NO3
2: 0.05 and

0.50 mM KNO3 as well as other compounds used in the

measuring solution), and only electrodes with Nernstian

slopes higher than 55 mV per tenfold concentration dif-

ference were used.

An initial measurement was performed to monitor the

net fluxes of NH4
? and NO3

- along the roots. Six white fine

roots were selected from the root system for each treat-

ment. Fluxes were measured at the root tip and either

300 lm (approximately 0–3 mm) or 8 mm (approximately

5–30 mm) walk steps from the root tip. Ion gradients

(NH4
? and NO3

2) near the root surface (approximately

5 lm above the root surface) were measured by moving an

ion-selective microelectrode between two positions that

were 30 lm apart and perpendicular to the root axis. Ion

flux readings were performed every 6 s for an average of

10 min at each location. Flux data and root images were

acquired using the MageFlux software attached to the SIET

system.

To investigate the net NH4
? flux and interference of

NO3
- with the net NH4

? flux, white fine roots were equi-

librated for 30 min in the measuring solution (0.05 mM

NH4Cl, 1 mM KCl, 0.1 mM CaCl2, pH 4 or 7). The net

NH4
? flux was recorded for 10 min at each position. To

examine the interference of NO3
2 with the net NH4

? flux,

the net NH4
? flux was recorded in a measuring solution

containing NH4NO3 instead of NH4Cl (0.05 mM NH4NO3,

1 mM KCl, 0.1 mM CaCl2, pH 4 or 7) and following the

process described above.

As with the measurements of net NH4
? fluxes, the net

NO3
2 fluxes were determined by exposing white fine roots

to a measuring solution (1 mM KCl, 0.1 mM CaCl2, pH 4

or 7) containing either 0.05 mM KNO3 or 0.05 mM NH4-

NO3. NO3
2 selective microelectrodes were used to measure

the net NO3
2 flux along the roots.

Activities of PM H1-ATPases

The PM H?-ATPase activity was determined spectropho-

tometrically at 700 nm as described by Sorgona et al.

(2011). Briefly, the assays were conducted at 38 �C in

0.6 ml of medium containing 30 mM BTP/MES (pH 6.5),

5 mM MgSO4, 5 mM ATP, 0.6 mM Na2MoO4, 100 mM

KNO3, 1.5 mM NaN3, and 0.01 % (w/v) polyoxyethylene

20 cetyl ether with or without 100 lM vanadate (an inhi-

bitor of P-type H?-ATPase). The difference between these

two activities was attributed to PM H?-ATPases. Sodium

azide and KNO3 were used as selective inhibitors of

mitochondrial and tonoplast H?-ATPases, respectively.
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The reaction was initiated by the addition of membrane

vesicles (1 lg of membrane protein) and terminated after

30 min by the addition of a solution containing 0.6 M HCl,

3 % (w/v) SDS, 3 % ascorbic acid and 0.5 % ammonium

molybdate at 2 �C. After solubilization of the membrane

vesicles with 0.5 M NaOH, the total soluble protein was

measured according to Bradford (1976).

Analysis of the transcript levels of representative

genes involved in N uptake

To identify the NH4
? and NO3

- transporters of Prince

Rupprecht’s Larch and Chinese Fir, transcriptome

sequencing data obtained from the two conifers were

downloaded from the NCBI website and analyzed (Sup-

plementary Tables S1 and S2). The representative genes

encoding proteins associated with N uptake were selected

for transcript analysis by quantitative RT-PCR (qPCR).

The total RNA from plant tissues was isolated and purified

using a plant RNA extraction kit (R6827, Omega Bio-

Tek, GA, USA), and trace genomic DNA was digested by

DNase I (E1091, Omega Bio-Tek). Aliquots of 1 lg of

total RNA were used for first-strand cDNA synthesis using

a PrimeScript RT reagent kit (DRR037S, Takara, Dalian,

China) in a 20 ll reaction volume, according to the man-

ufacturer’s instructions. PCR was performed in a 20 ll

reaction volume using 10 ll of 29 SYBR Green Premix Ex

Taq II, 2 ll of cDNA, and 1 ll of 20 mM primers (Sup-

plementary Tables S1 and S2) in a Roche LightCycler 96

instrument. 18S rRNA was used as a reference gene. Three

biological replicates with three technical replicates were

assayed for each sample. The reference gene was included

in each plate. The efficiencies of all PCR reactions were

between 95 and 105 % (Supplementary Tables S1 and S2).

Enzymes involved in N assimilation

Enzyme assays for N assimilation were conducted on six

replicate seedlings from each treatment.

NR activity was assayed using the method described by

Natali et al. (2009). Approximately 0.5 g fresh weight

frozen material was ground to a fine powder in an ice-bath.

The powder was extracted in a 4 ml ice-cold extraction

buffer consisting of 25 mM phosphate buffer (pH 7.5),

5 mM cysteine and 5 mM EDTA–Na2. The extract was

centrifuged at 4000 rpm for 15 min at 4 �C, and then

0.4 ml enzyme extract was added to 1.6 ml of the assay

mixture (1.2 ml of 0.1 M KNO3–phosphate buffer and

0.4 ml of 2.0 mg ml-1 NADH) and incubated at 25 �C for

30 min. For the control, 0.4 ml phosphate buffer was used

instead of 0.4 ml NADH. We analyzed the incubation

buffer’s nitrite (NO2
-) concentration by adding 1 ml each

of 1 % (w/v) sulfanilamide in 3 N HCl and 0.02 % N-

naphthylethylenediamine in water. After a 15 min reaction,

all samples were centrifuged for 5 min at 4000 rpm, and

the supernatant was analyzed in a spectrophotometer at

540 nm. The NO2
- concentration was determined using a

standard curve.

Nitrite reductase (NiR) activity was measured as the

reduction in the amount of NO2
- in the reaction mixture.

The reaction mixture consisted of a 0.1 M potassium

phosphate buffer (pH 6.8), 0.4 mM NaNO2, 2.3 mM

methyl viologen, enzyme extract and 4.3 mM sodium

dithionite in 100 mM NaHCO3, which initiated the reac-

tion. After a 30 min incubation period at 27 �C, the reac-

tion was stopped by spinning and boiling the mixture for

1 min. After the reaction, the amount of NO2
- ions

remaining in the reaction mixture was measured at 540 nm

using the standard NaNO2 curve.

For the GS activity assay, frozen tissues (approxi-

mately 1 g) were ground in 3.0 ml of a 100 mM Tris–

HCI (pH 7.6) extraction buffer containing 1 mM EDTA,

1 mM MgCl2�6 H20 and 10 mM 2-mercaptoethanol using

an ice-cold mortar and pestle. The homogenate was cen-

trifuged at 13000 rpm for 25 min to clarify the solution,

and the supernatant was used as the crude enzyme solu-

tion in the assay. A sample of 1.2 ml of the crude enzyme

extract was added to a 1.6 ml assay mixture containing

0.6 ml imidazole-muriatic acid buffer (0.25 M, pH 7. 0),

0.4 ml glutamic acid-Na (0.30 M, pH 7.0), 0.4 ml ATP-

Na (30 M, pH 7.0), 0.2 ml MgSO4 (0.5 M) and 1.2 m1

crude GS solution. The mixture was incubated for 5 min

at 25 �C, and then 0.2 ml of hydroxylamine hydrochloride

(a mixture of 1 M hydroxylamine hydrochloride and 1 M

HCl at a ratio of 1:1) was added and left to stand for

15 min. The reaction was stopped by adding 0.8 ml acidic

FeCl3 (2 % (W/V) TCA and 3.5 % (W/V) FeCl3 in 2 %

HCl). The samples were centrifuged at 4000 rpm for

15 min, and the absorbance of the supernatant was mea-

sured at 540 nm. The amount of c-glutamylhydroxamate

formed was determined using a standard curve derived

from authentic glutamylhydroxamate in the presence of

all assay components.

Glutamate synthase (GOGAT) activity was measured

following Singh and Srivastava’s method (1986). Briefly,

control and treated root and shoot samples (100 mg) were

homogenized in 0.2 M sodium phosphate buffer (pH 7.5)

containing 2 mM EDTA, 50 mM KCl, 0.1 % (v/v) mer-

captoethanol and 0.5 % (v/v) Triton X 100. The homo-

genate was centrifuged at 6000 rpm for 15 min at 4 �C.

The supernatant was used to estimate GOGAT activity.

Three milliliters of the reaction mixture contained25 mM

sodium phosphate buffer (pH 7.3), which consisted of

1 mM EDTA, 20 mM L-glutamine, 5 mM 2-oxoglutarate,

100 mM KCl, 1 mM NADH, and 0.3 ml enzyme extract. A

decrease in absorbance was measured at 340 nm for 5 min.
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Data processing and statistical analysis

Net ion flux data were calculated and exported using the

MageFlux software (version 1.0) attached to the SIET

system. Readings for the net NH4
? influxes and NO3

-

influxes over 10 min were averaged at each measuring

point for each plant. All statistical tests were performed

with SPSS (version 20.0, SPSS Inc., Chicago, IL, USA). A

two-way ANOVA was used to examine the effects of pH

and species on the experimental variables. The data were

tested for normality prior to further analyses. Differences

between the means were determined on the basis of least

significant differences (P = 0.05).

Results

Growth parameters

pH had different effects on root morphology and photo-

synthesis within Prince Rupprecht’s Larch and Chinese Fir

(Table 1). Prince Rupprecht’s Larch grown in a neutral pH

(pH 7) nutrient solution had greater biomass, root surface

area and net photosynthetic rates compared with those

grown in pH 4 (Table 1). However, low pH increased root

length and net photosynthetic rate in Chinese Fir, demon-

strating the acclimation of this species to low pH (Table 1).

To determine the N uptake in fine roots, we monitored

the net NH4
? and NO3

- fluxes from the root tip to 30 mm

from the apex using the SIET technique. The analyses of

data from seedlings pre-treated with pH 4 or 7 showed that

root position had a strong effect on the flux of both ions. In

fine roots of Prince Rupprecht’s Larch, the net NH4
? flux at

pH 7 varied from 20 to 67 pmol cm-2 s-1 along the root

tip, and the value was greater than that of roots at pH 4

(from -2 to 30 pmol cm-2 s-1) (Fig. 1a). In roots of

Chinese Fir, the net NH4
? flux ranged from 5 to

90 pmol cm-2 s-1 along the root apex (Fig. 1b). Both

Prince Rupprecht’s Larch and Chinese Fir had high NH4
?

influxes near the root tip, and the net NH4
? uptake

decreased slightly from the root tip to the basal regions

(Fig. 1A, B); however, the decline was more abrupt in

Chinese Fir.

The net NO3
- flux in Prince Rupprecht’s Larch was

greatest at 1.5–2.1 mm from the root tip (Fig. 1c). How-

ever, the net NO3
- flux in Chinese Fir was zero or negative

(efflux) at the root tip, and the greatest flux rate occurred

13 mm from the root tip. In Chinese Fir roots, locations

near the root tip (i.e., 0–0.3 mm) exhibited an NO3
-efflux

that was significantly lower than that observed in locations

distal to the root tip. The net flux of NO3
- in Chinese Fir

ranged from -10 to 31 pmol cm-2 s-1 in pH 7 solution

and from -5 to 17 pmol cm-2 s-1 in pH 4 solution

(Fig. 1d).

NH4
1 and NO3

2 uptake and H1-ATPase activity

In roots of Prince Rupprecht’s Larch, the mean net NH4
?

uptake was significantly greater in the pH 7 solution rela-

tive to the pH 4 solution (Fig. 2a). The net uptake of NH4
?

decreased by approximately 30 % when both NH4
? and

NO3
- were present in the pH 4 solution, whereas it

remained unaltered in the pH 7solution (Fig. 2a). The

NO3
- flux in Prince Rupprecht’s Larch was also greater in

the pH 7 solution than in the pH 4 solution in the presence

of KNO3. pH did not have a significant effect on net NO3
-

flux when NH4NO3 was used as the N source (Fig. 2c).

pH did not have a significant effect on mean net uptake

of NH4
? in Chinese Fir (Fig. 2b); however, the mean net

Table 1 Growth parameters and photosynthesis of Prince Rupprecht’s Larch and Chinese Fir treated with solutions at pH 4 or 7

Species pH Biomass (mg

DW)

Total root

length (cm)

Total root

surface area

(cm2)

Total root

volume

(cm3)

Height (cm) Net photosynthetic

rate (mmol CO2 m-2

s-1)

Prince

Rupprecht’s

Larch

4 100.59 ± 2.35b 46.90 ± 4.33a 11.03 ± 1.04b 0.64 ± 0.02a 11.95 ± 0.38a 5.02 ± 0.26bc

7 120.48 ± 4.91a 49.37 ± 2.65a 15.61 ± 1.19a 0.60 ± 0.03a 12.65 ± 0.52a 6.33 ± 0.12a

Chinese fir 4 108.21 ± 5.90ab 31.30 ± 1.68b 10.96 ± 1.12b 0.54 ± 0.04a 8.62 ± 0.27b 5.07 ± 0.30b

7 115.96 ± 3.94ab 19.12 ± 1.71c 10.16 ± 0.69b 0.61 ± 0.03a 8.80 ± 0.19b 4.66 ± 0.18c

P values Species ns *** * ns *** **

pH ** ns ns ns ns ns

Species 9 pH ns * * ns ns ***

Data indicate mean ± SE (n = 6). A two-way ANOVA was used to examine the effects of pH and species. Different letters in the same column

indicate significant difference. * P\ 0.05; ** P\ 0.01; *** P\ 0.001; ns not significant
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NO3
- uptake was significantly greater at pH 7 than at pH 4

in both measurement solutions (Fig. 2d). Significant dif-

ferences were not found in NH4
? and NO3

- influx when

NH4Cl or NH4NO3 were used as the N source (Fig. 2b, d).

A comparison of the uptake of the two forms of nitrogen

found in NH4NO3 showed that in Prince Rupprecht’s

Larch, the rate of NO3
- uptake was 1.3 times higher than

the rate of NH4
? uptake at pH 4, whereas the rate of NH4

?

uptake was 1.7 times higher than the rate of NO3
- uptake

at pH 7. Moreover, the rate of NH4
? uptake in Chinese Fir

was 5.6 (pH 4) and 2.6 (pH 7) higher than the rate of NO3
-

uptake in NH4NO3 measurement solutions.

Low pH significantly decreased the H?-ATPase activity

in roots of Prince Rupprecht’s Larch by more than 50 %

(Fig. 3). However, the H?-ATPase activity in roots of

Chinese Fir remained unaltered (Fig. 3).

Transcriptional regulation of genes involved in N

uptake

In Prince Rupprecht’s Larch, three AMTs and ten NRTs

were selected and analyzed. Among the three AMTs

expressed in the roots of Prince Rupprecht’s Larch,

AMT1;1 exhibited high transcript abundance. The expres-

sion level of AMT1;1 in Prince Rupprecht’s Larch was

significantly higher at pH 7 than at pH 4. Low pH also

induced a significant down-regulation of all NRTs. In par-

ticular, the expression levels of NRT1;1, NRT1;6 and

NRT1;8 were several-fold higher at pH 7 than at pH 4

(Fig. 4a). The observed down-regulation of the expression

of NRTs in Prince Rupprecht’s Larch after treatment with

pH 4 solution was consistent with the decreases in the net

uptake of NH4
? and NO3

- (Fig. 4a).

Fig. 1 Net fluxes of NH4
? (a, b) and NO3

- (c, d) (pmol cm-2 s-1)

(Mean ± SE, n = 6) measured at specified distances from the tips of

Prince Rupprecht’s Larch and Chinese fir roots. Eight-week-old

seedlings were incubated in a solution containing 1 mM KCl, 0.1 mM

CaCl2, pH 4 or 7, to which either 0.05 mM NH4Cl for NH4
? or

0.05 mM KNO3 for NO3
- flux measurements was added
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In Chinese Fir, five AMTs and ten NRTs were found in

the transcriptome sequencing data and used for the analy-

sis. The transcript abundances of AMT2;1 and AMT2;2 in

pH 7 solution were significantly decreased compared with

those in pH 4 solution (Fig. 4b). However, the remaining

three AMTs (AMT1;1, AMT1;2 and AMT2;3) were not

significantly affected by the pH level. Low pH also

decreased the expression levels of NRTs, such as NRT1;8

and NRT3;1, in Chinese Fir (Fig. 4b).

N assimilation

The NR activity in Prince Rupprecht’s Larch was reduced

by 64 and 34 % (in roots and leaves, respectively) in the

pH 4 solution compared to that in the pH 7 solution

(Fig. 5a, b). The NiR activity in Prince Rupprecht’s Larch

was also inhibited when roots were exposed to pH 4

solution (Fig. 5c, d), and low pH also decreased NR

activities and NiR activities by 28 and 25 % in roots of

Chinese Fir, respectively (Fig. 5a, c). However, foliar NR

activity and NiR activity in Chinese Fir were not influenced

by pH (Fig. 5b, d).

In Prince Rupprecht’s Larch, low pH had no significant

effect on GS activity in roots, whereas it decreased GS

activity in leaves (Fig. 6a, b). GOGAT activity was not

influenced by pH in either location (Fig. 6c, d). In contrast,

GS activity in Chinese Fir was 34 and 80 % higher in the

roots and leaves in the pH 4 solution, respectively (Fig. 6a,

b). Low pH also induced higher GOGAT activity in Chi-

nese Fir roots (Fig. 6c), whereas significant difference were

not found between pH 4 and pH 7 for foliar GOGAT

activity (Fig. 6d).

Fig. 2 Mean net fluxes of NH4
? (a, b) and NO3

- (c, d) (Mean ± SE,

n = 6) averaged over the apical 30 mm of roots of Prince

Rupprecht’s Larch and Chinese Fir. A two-way ANOVA was used

to examine the effects of pH and measurement solution. Bars labeled

with different letters indicate significant difference between the

treatments
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Discussion

Plant growth

Following forest disturbance, NH4
? is easy to utilize and a

greater proportion of N may be available as NO3
- (Hope et al.

2003). These altered soil conditions may negatively affect the

growth of trees adapted to NH4
?-rich soils (Kronzucker et al.

1997). In conifers that prefer NH4
?, growth declines when pH

changes from acidic to neutral (Van Den Driessche 1978).

This is in agreement with the greater root length and net

photosynthetic rates of Chinese Fir. However, Prince Rup-

precht’s Larch shows opposite pattern. These results indicate

that pH may have different effects on N uptake and assimi-

lation mechanisms in two conifers species.

Variation in NH4
1and NO3

2 fluxes along the root

Fine roots have four distinct regions: root cap and meristem-

atic, elongation and maturation zones. Each area has different

anatomical and functional characteristics that provide differ-

ent nutrient ion uptake capacities (Enstone et al. 2001; Li et al.

2012). Previous studies have suggested that different zones of

a root’s apical region have distinct net fluxes of NH4
? and/or

NO3
- (Fang et al. 2007; Li et al. 2010). In this study, Prince

Rupprecht’s Larch and Chinese Fir both exhibited the highest

net fluxes of NH4
? near the root tip, whereas NO3

- fluxes near

the root tip were significantly lower than those observed fur-

ther away. The net NH4
? and NO3

- fluxes were greatest at

5–20 and 0–30 mm from the root tips in Douglas Fir,

respectively and 5 and 0–10 mm from the root tips in lodge-

pole pine, respectively (Hawkins et al. 2008). Axial scans have

revealed a slight decline in net NH4
? flux with distance from

the root apex in barley roots (Henriksen et al. 1992), and NO3
-

uptake near the root tips was slower compared with the uptake

by the more basal regions in maize (Lazof et al. 1992), barley

(Siebrecht et al. 1995) and poplar (Luo et al. 2012). Overall,

these results indicate that spatial variation in the uptake of

NH4
? and NO3

- may be linked to the different anatomical

properties of roots. Different ion uptake profiles likely reflect

differences in root development rates and root anatomy at a

given distance from the tip. The expression of N transporters

or genes responsible for these transporters has been shown to

vary with distance from the root tip (Okamoto et al. 2003).

Further research is required to better understand the correla-

tion between gene expression patterns and flux profiles along

the roots.

NH4
1 and NO3

2 uptake

Low pH decreased the net NH4
? uptake in Prince Rup-

precht’s Larch but had no effect on NH4
? uptake in

Fig. 3 Activities of H?-ATPase activity [nkat (mg protein)-1] in

roots of Prince Rupprecht’s Larch and Chinese Fir pretreated in

solutions at pH 4 or 7. A two-way ANOVA was used to examine the

effects of pH and species. Bars labeled with different letters indicate

significant difference between the treatments

Fig. 4 Transcriptional fold-changes of key genes involved in N

uptake in roots of Prince Rupprecht’s Larch (a) and Chinese Fir (b) in

solutions at pH 4 or 7. The signal intensities were calibrated based on

a constitutively expressed Prince Rupprecht’s Larch 18 s rRNA gene

and Chinese Fir 18 s rRNA gene, respectively. The scales of the y-

axis are different from each other
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Chinese Fir. We hypothesize that Chinese Fir is adapted to

acidic soils of South China and can maintain N uptake,

particularly in NH4
? form, under low pH conditions.

However, Prince Rupprecht’s Larch grows on the Loess

Plateau in northwest China in neutral or alkaline soils. The

differences in NH4
? uptake under different pH levels

between the two species could be related to the ability of

the species to maintain proton efflux associated with NH4
?

assimilation at low pH or different uptake mechanisms in

the species for NH4
? (Hawkins and Robbins 2010). Chi-

nese Fir is likely capable of maintaining its H?-ATPase

activity and proton efflux at pH 4 and pH 7. In addition, the

NH4
? transporters were also up-regulated at pH 4. There-

fore, these trees have a high net uptake of NH4
? at both

low and neutral pH conditions. In contrast, Prince Rup-

precht’s Larch from the Loess Plateau cannot maintain

proton efflux and therefore exhibits inhibited NH4
? uptake.

The down-regulation of the expression of AMTs is also

consistent with the inhibition of NH4
? uptake.

Low net NO3
- uptake from pH 4 soils was found in

most of the treatments, which is inconsistent with existing

theories (Fig. 2c, d). In anion transport across the root

plasma membranes, proton-anion cotransport likely uses

the steep electric potential gradients and pH as driving

forces (Hawkins and Robbins 2010). NO3
- uptake, there-

fore, is expected to increase as pH decreases. However, this

result was not found in our research or in previous studies.

For example,NO3
- uptake in Arabidopsis thaliana was

greatest at pH 8–9 when pH ranged from 3 to 10, and NO3
-

uptake in Picea abies was greatest at pH 5.5 when pH

ranged from 2.5 to 6.5 (Doddema and Telkamp 1979). As

demonstrated in the present study, at low pH, the PM H?-

ATPase activity was decreased in Prince Rupprecht’s

Larch and remained unchanged in Chinese fir.

Fig. 5 Activities of nitrate reductase (NR, nkat [mg protein)-1] (a,

b) and nitrite reductase [NiR, nkat (mg protein)-1] (c, d) in roots and

leaves of Prince Rupprecht’s Larch and Chinese fir pretreated in

solutions at pH 4 or 7. A two-way ANOVA was used to examine the

effects of pH and species. Bars labeled with different letters indicate

significant difference between the treatments
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Additionally, the transcript levels of NRTs were also

decreased at low pH solution in the two conifers. Previous

studies have attributed the low NO3
- uptake of conifers

under acidic conditions to reduced NO3
- reductase activ-

ity, which is consistent with the results obtained in our

study (Marschner et al. 1991). Reid and Hayes (2003)

noted that the negative effect of high chloride ion con-

centrations on NO3
- transporters could also result in low

NO3
- uptake because competition occurs between the two

anions for the same anion transporter; however, further

research is required to test this theory.

Our results revealed a significantly greater uptake of

NH4
? compared with that of NO3

- in most treatments, and

this result is consistent with previous studies in which

conifers have shown a preference for NH4
? (Lucash et al.

2005; Socci and Templer 2011). The greater capacity for

NH4
? uptake may be an adaptation to the greater avail-

ability of NH4
? in forest soils (Lucash et al. 2005). Soils

tend to possess an overall negative charge, which allows

NO3
- to move freely, and NO3

- is also easily lost from the

root zone through leaching because of its high diffusion

coefficient in soil (Lambers and Colmer 2005).

N assimilation

A limited number of studies have focused on the effects of

pH on N assimilation. The mechanism by which enzyme

activity decreases or increases with pH is not well known,

although the mechanisms of enzyme regulation associated

with several environmental (salt, drought, heat) and nutri-

tional factors are well understood (Lambers and Colmer

2005; Xu et al. 2012). In this study, low pH significantly

reduced NR and NiR enzyme activities in both species. NR

is a substrate-inducible enzyme; thus, lower NO3
- avail-

ability at pH 4 may be a potential mechanism that lowers

NR activity. This hypothesis supports the net NO3
- flux

results obtained in the pH 4 solution in this study. NR is also

known to be regulated at the NR protein synthesis level and

Fig. 6 Activities of glutamine synthetase (GS, nkat (mg protein) -1)

(a, b) and glutamate synthase [GOGAT, nkat (g protein)-1] (c, d) in

roots and leaves of Prince Rupprecht’s Larch and Chinese fir

pretreated in solutions at pH 4 or 7. A two-way ANOVA was used to

examine the effects of pH and species. Bars labeled with different

letters indicate significant difference between the treatments
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through post-translational modification of the protein, which

could be an area of further investigation (Kaiser et al. 1999).

Low NiR activity at highly acidic pH may be caused by

limited NO2
- resulting from low NR activity at the same

pH. pH has distinct effects on GS and GOGAT activities in

Prince Rupprecht’s Larch and Chinese Fir. Low pH induces

higher GS and GOGAT activities in Chinese Fir but reduces

these activities in Prince Rupprecht’s Larch, which may be

caused by the different habitats for these trees. Prince

Rupprecht’s Larch grows on the Loess Plateau in soils with

low NH4
?, whereas Chinese Fir grow in acidic soils rich in

NH4
?. In acidic forest soils, NO3

- may become rapidly

reduced to NH4
?, which would render NH4

? a major N

source for plant roots (Rennenberg et al. 2010 and references

therein). Thus, Chinese Fir exhibits higher GS activity in

response to high uptake of ammonium and are adapted to

low pH levels in soil and to avoid the possible toxic effect of

ammonium ion on cell metabolism.
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