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Abstract: Background: The Loess Plateau, an ecologically vulnerable region, has long been suffering
from serious soil erosion. Revegetation has been implemented to control soil erosion and improve
ecosystems in the Loess Plateau region through a series of ecological recovery programs. However,
the increasing atmospheric CO2 as a result of human intervention is affecting the climate by global
warming, resulting in the greater frequency and intensity of extreme weather events, such as storms
that may weaken the effectiveness of revegetation and cause severe soil erosion. Most research to
date has evaluated the effectiveness of revegetation on soil properties and soil erosion of different
land use or vegetation types. Here, we study the effect of revegetation on soil organic carbon (SOC)
storage and erosion-induced carbon loss related to different plant communities, particularly under
extreme rainstorm events. Materials and methods: The erosion-pin method was used to quantify soil
erosion, and soil samples were taken at soil depths of 0–5 cm, 5–10 cm and 10–20 cm to determine
the SOC content for 13 typical hillside revegetation communities in the year of 2013, which had the
highest rainfall with broad range, long duration and high intensity since 1945, in the Yanhe watershed.
Results and discussion: The SOC concentrations of all plant communities increased with soil depth
when compared with slope cropland, and significant increases (p < 0.05) were observed for most
shrub and forest communities, particularly for natural ones. Taking the natural secondary forest
community as reference (i.e., soil loss and SOC loss were both 1.0), the relative soil loss and SOC
loss of the other 12 plant communities in 2013 ranged from 1.5 to 9.4 and 0.30 to 1.73, respectively.
Natural shrub and forest communities showed greater resistance to rainstorm erosion than grassland
communities. The natural grassland communities with lower SOC content produced lower SOC loss
even with higher soil loss, natural secondary forest communities produced higher SOC loss, primarily
because of their higher SOC content, and the artificial R. pseudoacacia community with greater soil
loss produced higher SOC loss. Conclusions: These results indicate that natural revegetation is more
effective in enhancing SOC storage and reducing soil erosion than artificial vegetative recovery on
hillsides. However, natural secondary forest communities, with higher SOC content and storage
capacity, may also contribute to larger SOC loss under extreme rainstorms.

Keywords: revegetation; plant community; soil erosion; carbon storage; carbon loss; Loess Plateau

Int. J. Environ. Res. Public Health 2016, 13, 456; doi:10.3390/ijerph13050456 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2016, 13, 456 2 of 15

1. Introduction

Soil, the largest pool of terrestrial organic carbon in the biosphere and approximately 3.3 times
the size of the atmospheric pool and 4.5 times the size of the biotic pool [1,2], plays an important
role in the terrestrial carbon cycle. Soil carbon (C) storage is a strategy to achieve food security and
mitigate climate change while simultaneously increasing productivity, improving water quality, and
restoring degraded soils and ecosystems [2]. Soils act as a carbon sink to store carbon dioxide through
afforestation and other land use conversions [3–5]. However, soil erosion has significant impacts on
soil degradation and the global carbon cycle [6,7]. Lateral C-fluxes are primarily influenced by water
erosion, which disturbs the soil surface and transports sediment-bound carbon out of the system [8].
Recent studies suggest that climatic variability will increase as a consequence of global warming and
will result in a greater frequency and intensity of extreme weather events, such as storms, leading to a
decrease in regional ecosystem carbon stocks, which has the potential to negate a predicted increase
in terrestrial carbon uptake [9,10]. As an essential element of soil physical and chemical properties,
soil organic carbon (SOC) plays an important role in enhancing crop production and mitigating
greenhouse gas emissions [11,12]. Strategies for restorative land use and the adoption of recommended
management practices on cropland, grazing lands and forestlands can restore the SOC pool while
mitigating climate change [13]. Therefore, it is important for regional ecosystem sustainability to
study the effects of land cover conversion on soil carbon storage and erosion-induced carbon loss,
particularly under extreme rainstorm events.

The Chinese Loess Plateau has long experienced serious soil erosion, and severe soil and water loss
has led to widespread land degradation [14]. Land use and surface cover are the principal determinants
of erosion rates [15]. Unsustainable land use and low vegetative cover are the primary reasons for
soil erosion and nutrient loss in the Loess Plateau [16–19]. To implement ecological restoration and
soil erosion control, a series of revegetation measures have been conducted since the 1950s in the
Loess Plateau, in particular the “Grain for Green” project (GFG) in 1999. This project promoted the
conversion of slope arable land to forest or grassland. Revegetation enhanced the storage of SOC in
soils by reducing soil erosion and increasing inputs of organic materials [20]. Anthropogenic changes
in vegetative cover and natural succession have been shown to be a significant ways of carbon sink [21].
However, on-site SOC losses caused by water erosion under different land uses have been found to
have significant effects on lateral carbon fluxes and deserve attention in the context of the global carbon
cycle [8,22,23].

Conversion of land use to agriculture has many potential implications for the mobilization and
export of SOC [24]. Flooding events in agricultural watersheds are believed to be particularly important
because they mobilize large quantities of total organic carbon (TOC) into the stream channel [25,26].
However, land use and land cover (LULC) have a strong influence on the intensity of soil erosion
processes and the consequent loss of SOC and nutrients from soils. Among forest, shrubland, pasture
and agriculture classes in a Mediterranean catchment, agricultural areas were found to be the most
dynamic sites, accounting for 70% of the eroded soil but 45% of the total eroded C, and the remaining
percentage of eroded C was derived primarily from relatively C-rich forest soils, which were the
dominant LULC class in terms of spatial extent [23].

Revegetation probably enhances the carbon storage capacity of terrestrial ecosystems on the Loess
Plateau [27,28]. The different vegetation characteristics and organic carbon content in soils should
influence the extent of soil erosion and its associated carbon loss within different plant communities.
Following the implementation of a series of vegetation recovery programs in the Loess Plateau
region, vegetation community coverage, height, diversity and stability increased as a whole, and
thus, vegetation quality and quantity significantly increased accordingly [29]. Tree planting was
widely implemented to accelerate community succession because the process of natural succession was
very slow in the Loess Plateau region. In addition, planting trees and grasses could increase surface
vegetation cover and control soil erosion under certain conditions [17,19,30]. Successful models of
afforestation were also found for “ecological forests” (i.e., trees for soil and water conservation, such as
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Robinia pseudoacacia, Pinus tabuliformis, Caragana intermedia, and Hippophae rhamnoides) and “economic
forests” (i.e., horticultural tree crops, such as Malus pumila and Armeniaca vulgaris) [29]. However, low
production “small but old tree” forests and tree death in drought years also existed widely, depending
on the long-term soil water deficit, soil desiccation and the decrease of streamflow in different scale
catchments [31–34]. Natural vegetation on abandoned land may begin the process of succession
after the termination of human disturbance and gradually transform to secondary wild grassland or
secondary forest communities [35,36]. In the hill and gully landscape of the Loess Plateau, inter-gullies
are the primary location of croplands, and the abandonment of cropland is related to slope gradient,
distance from the village, and soil and water conservation policies; as a result, plant communities with
different successional stages have developed, such as communities dominated by Artemisia scoparia,
Lespedeza davurica, Artemisia gmelinii, Bothriochloa ischaemun, Sophora viciifolia, and Quercus liaotungensis,
respectively [37,38]. Although the implementation of a series of ecological recovery programs has
achieved remarkable progress in soil erosion control [39,40], it is still likely that soil loss will be
extremely severe during heavy rainstorms [41]. Owing to the differential ability of vegetation types to
reduce soil loss under extreme rainstorm events [42], corresponding differences in carbon losses also
exist. Currently, most related studies in the Loess Plateau region have focused on soil erosion and soil
organic carbon distribution under different land uses or vegetation types at the slope scale [43,44] or
the watershed scale [45–47]. However, little is known about SOC storage and erosion-induced SOC
loss related to differences among plant communities, particularly erosion-induced SOC loss under
extreme rainstorm events. It happened that Yanhe watershed experienced consecutive heavy rainfalls
with broad range, long duration and high intensity in July 2013.

Thus, the objectives of this study were to examine the effects of revegetation on soil organic
carbon storage and carbon losses caused by soil erosion on hillsides in response to extreme rainstorm
events in the hill and gully area of the Loess Plateau by analyzing: (1) changes in soil organic carbon
content and capacity for soil carbon storage; and (2) soil erosion and erosion-induced carbon loss of
different plant communities. The results of this study could provide references for strategies towards
the optimization of vegetation restoration and climate change mitigation in the Loess Plateau region.

2. Materials and Methods

2.1. Study Area

The study area was located in the Yanhe watershed at N 36˝231–37˝171 and E 108˝451–110˝281

(Figure 1). The watershed that occupies 7687 km2 is the primary tributary in the middle reaches of the
Yellow River and belongs to the hill-gully region of the Loess Plateau. The climate is semi-arid, with
mean annual precipitation of 500 mm (420–540 mm), and mean air temperature of 9.5 ˝C (8.80 ˝C to
10.2 ˝C). The seasonal distribution of precipitation is uneven, characterized by intensive rainfall from
July to September that accounts for more than 60% of the annual rainfall. Soils are predominantly loess
and have a texture of 64%–73% silt and 17%–20% clay; the loose soils are vulnerable to dispersion and
transport [48,49].

The natural vegetation is composed of grassland, shrub and secondary forest. The dominant tree
species include Quercus liaotungensis, Pinus tabuliformis, Platycladus orientalis, and Acer buergerianum.
The dominant shrub species include Syringa julianae, Sophora viciifolia, Periploca sepium, and
Ostryopsis davidiana. And the dominant herb species include Artemisia scoparia, Stipa grandis,
Stipa bungeana, Artemisia gmelinii, Artemisia giralaii, Thymus mandshuricus, Bothriochloa ischaemum,
Lespedeza davurica, and Carex lanceolata. The primary introduced tree species include Robinia pseudoacacia,
Populus simonii, Hippophae rhamnoides, Caragana intermedia, and Salix matsudana. The economic forests
are dominated by Malus pumila, Prunus davidiana, and Armeniaca sibirica [29].
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Figure 1. Location and distribution of the six sub-watersheds and meteorological stations in the 
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Stipa bungeana (RAS2). Each community had three replicate sites distributed in different 
sub-watersheds, and three replicates of slope croplands (P. miliaceum, Z. mays) were used as the 
reference (Table 1). 

Figure 1. Location and distribution of the six sub-watersheds and meteorological stations in the
Yanhe watershed.

2.2. Experimental Design and Soil Sampling

Our research was conducted in six sub-watersheds distributed from south to north in the Yanhe
watershed (Figure 1). The survey sites were in inter-gully areas and 13 communities, defined by
species dominance, were selected. There were four grassland communities of Artemisia scoparia (A),
Stipa bungeana + Lespedeza davurica (SL), Artemisia gmelinii + Stipa bungeana (AS) and Artemisia gmelinii +
Artemisia giralaii+Bothriochloa ischaemum(AAB); two natural shrubland communities of Sophora viciifolia
´ Artemisia gmelinii + Stipa bungeana (SAS) and Syringa julianae ´ Carex lanceolata (SC); two natural
forestland communities of Quercus liaotungensis ´ Syringa julianae ´ Carex lanceolata (QSC) and
Acer buergerianum ´ Syringa julianae ´ Carex lanceolata (ASC), two artificial shrubland communities
of Hippophae rhamnoides ´ Artemisia gmelinii + Stipa bungeana (HAS) and Caragana intermedia ´
Artemisia gmelinii + Stipa bungeana (CAS); and three artificial forest communities of Armeniaca sibirica
´ Artemisia gmelinii + Stipa bungeana (AAS), 6–8 years Robinia pseudoacacia ´ Artemisia gmelinii +
Stipa bungeana (RAS1) and 15 years Robinia pseudoacacia ´ Artemisia gmelinii + Stipa bungeana (RAS2).
Each community had three replicate sites distributed in different sub-watersheds, and three replicates
of slope croplands (P. miliaceum, Z. mays) were used as the reference (Table 1).
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Table 1. Sites conditions and the cover of different layers of plant communities.

Vegetation Type Plant
Community a Aspect b Slope (˝) Tc c (%) Sc d (%) Gc e (%) Tpc f (%) Lc g (%) Bc h (%)

Slope cropland P SW 24 ˘ 2

Natural grassland

A SW 23 ˘ 3 26 ˘ 11 26 ˘ 11 19 ˘ 12 40 ˘ 16
SL SW 22 ˘ 4 15 ˘ 10 15 ˘ 10 16 ˘ 10 44 ˘ 16
AS SW 24 ˘ 1 42 ˘ 13 42 ˘ 13 24 ˘ 10 34 ˘ 14

AAB SW 25 ˘ 4 28 ˘ 13 28 ˘ 13 21 ˘ 13 44 ˘ 14

Artificial
shrubland

HAS NW 24 ˘ 4 41 ˘ 16 25 ˘ 9 67 ˘ 17 29 ˘ 8 32 ˘ 15
CAS SW 28 ˘ 1 41 ˘ 13 37 ˘ 17 78 ˘ 15 24 ˘ 9 19 ˘ 9

Natural shrubland
SAS SW 29 ˘ 1 42 ˘ 5 23 ˘ 12 55 ˘ 17 25 ˘ 7 28 ˘ 9
SC NW 28 ˘ 2 32 ˘ 2 12 ˘ 3 44 ˘ 6 48 ˘ 17 33 ˘ 2

Artificial forestland
AAS NW 27 ˘ 1 34 ˘ 19 17 ˘ 8 51 ˘ 14 20 ˘ 8 29 ˘ 7
RAS1 NW 26 ˘ 2 9 ˘ 3 18 ˘ 6 27 ˘ 7 21 ˘ 11 22 ˘ 10
RAS2 NW 25 ˘ 3 28 ˘ 8 25 ˘ 10 53 ˘ 12 31 ˘ 16 23 ˘ 13

Natural forestland
ASC NW 27 ˘ 2 45 ˘ 7 25 ˘ 11 15 ˘ 9 85 ˘ 7 57 ˘ 5 5 ˘ 1
QSC NW 26 ˘ 2 60 ˘ 9 35 ˘ 6 10 ˘ 2 105 ˘ 6 87 ˘ 7 5 ˘ 2

a P: slope cropland cultivated with P. miliaceum or Z. mays (20 years); A: Artemisia scoparia (3–5 years); SL:
S. bungeana + L. davurica (10–20 years); AS: A. gmelinii + S. bungeana (25–30 years); AAB: A. gmelinii + A. giralaii
+ B. ischaemum (30 years); HAS: H. rhamnoides ´ A. gmelinii + S. bungeana (15–20 years); CAS: C. intermedia ´
A. gmelinii + S. bungeana (15–20 years); SAS: S. viciifolia ´ A. gmelinii + S. bungeana (30–40 years); SC: S. julianae
´ C. lanceolata (30–40 years); AAS: A. sibirica ´ A. gmelinii + S. bungeana (15 years); RAS1: R. pseudoacacia
´ A. gmelinii + S. bungeana (6–8 years); RAS2: R. pseudoacacia ´ A. gmelinii + S. bungeana (15 years); ASC:
A. buergerianum ´ S. julianae ´ C. lanceolata (40–50 years); QSC: Q. liaotungensis ´ S. julianae ´ C. lanceolata
(60–70 years). b SW: 225˝–270˝; NW: 270˝–315˝. c Tree cover. d Shrub cover. e Grass cover. f Total plant cover
(sum of tree cover, shrub cover and grass cover). g Litter cover. h Biocrust cover.

The erosion-pin method [50] was used to set up observation plots in May 2013 (before the rainy
season). Three 2 m ˆ 2 m plots, each with nine pins at intervals of 50 cm, were laid out at each site
in the 13 plant communities. The erosion pins were iron nails 10 cm in length and 5 mm in diameter.
The pins were inserted with uniform hammering to minimize soil disturbance. The top of each nail
was even with the soil surface. A red stick was inserted 5 cm to the right side of each pin to facilitate
locating the pin. Meanwhile, vegetation, litter and biocrust cover of each site were recorded. The cover
of the vegetation in plots was estimated visually by two or three observers working together. In late
October 2013, the erosion depth (´) or deposition depth (+) of the pins was measured to the nearest
0.1 mm using digital caliper. Fortunately, the largest rainstorms happened in July 2013 since 1945, and
the rain was extraordinarily large to differentiate soil erosion among these treatments.

At each site, soil samples were collected with a soil auger (internal diameter 4.8 cm) from nine
points in an S-shaped pattern that paralleled the slope at depths of 0–5 cm, 5–10 cm and 10–20 cm.
The soil samples from the nine points in each depth were mixed, respectively. Live plant materials
(roots and shoots) and pebbles from each sample were separated in the laboratory and discarded.
All samples were air-dried, crushed, and passed through a 0.15 mm sieve prior to the SOC analysis.
SOC was determined by using the oil bath-K2CrO7 titration method (the Agricultural Chemistry
Committee of Chinese Soil Academy, 1984). Soil bulk density of each plot (3 replicates) was measured
collecting soil with a bulk sampler (100 cm3) near the soil sampling points, and comparing the original
mass of each soil core with the mass after oven-drying at 105 ˝C for 24 h.

2.3. Data Analysis

As the topsoil was disturbed and transported once water erosion had taken place, the organic
carbon percentage content (%) of 0–5 cm soil layer was used as the base value to calculate soil organic
carbon loss. The soil erosion and soil organic carbon loss in different plant communities were calculated
using the following equations:

Xj “

˜

m
ÿ

i“1

Di ˆ Bi ˆ 103

¸

{m pm “ 3q (1)
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S “

¨

˝

n
ÿ

j“1

Xj

˛

‚{n pn “ 3q (2)

SL “

¨

˝

n
ÿ

j“1

Xj ˆ Pj

˛

‚{n pn “ 3q (3)

where Xj is the average soil erosion of each site, Di is the average depth (mm) of the nine nails in each
plot, Bi is the average soil bulk density (g¨ cm´3) of each plot, 103 is the unit conversion factor, S is the
soil erosion (t¨km´2¨yr´1) of each plant community, SL is the soil organic carbon loss (t¨km´2¨yr´1)
of each plant community, and Pj is the average soil surface (0–5 cm) organic carbon percent content (%)
of each site; i is the plot number of each site and m is the total number of plots, j is the site number of
each plant community and n is the total number of sites.

As the absolute values were obtained in a year experiencing extraordinary storm events, relative
soil loss and soil organic carbon loss values were considered to be more meaningful. Therefore, the
natural forestland community Q. liaotungensis ´ S. julianae ´ C. lanceolata (QSC), with the lowest soil
erosion and the highest soil organic carbon, was used as a reference to calculate relative soil loss and
soil organic carbon loss of the other communities. The relative soil loss and soil organic carbon loss in
different plant communities were calculated using the following equations:

RS “ Sk{SQSC (4)

RSL “ SLk{SLQSC (5)

where RS and RSL is the relative soil loss and relative soil organic carbon loss, respectively, Sk and SLk
is the soil erosion and soil organic carbon loss in different plant communities, k represents the 13 plant
communities, SQSC and SLQSC is the soil erosion and soil organic carbon loss of the natural forestland
community Q. liaotungensis ´ S. julianae ´ C. lanceolata (QSC), respectively.

A two-way analysis of variance (ANOVA) was used to examine the effects of plant community
and soil depth on soil organic carbon content. A one-way ANOVA was used to identify the effects
of plant community on relative soil loss and relative soil organic carbon loss. If significant effects
were detected with the ANOVA, differences between individual means were tested using the Tukey
Honestly Significant Difference (HSD) test at p < 0.05. Statistics were run using SPSS 16.0 (SPSS Inc.,
Chicago, IL, USA). Figures were drawn using Sigmaplot 12.0 (Systat Software Inc., San Jose, CA, USA).

3. Results

3.1. Changes in Soil Organic Carbon Content

The two-way ANOVA indicated that plant community and soil depth had significant effects on
SOC content (Table 2). Compared with the slope cropland, the SOC content of the 13 plant communities
was increased or significantly increased (p < 0.05) at all soil depths. The SOC content in each soil
layer of the natural secondary forest communities was significantly higher (p < 0.05) than in other
natural plant communities. In addition, the SOC content of the AS community was significantly higher
(p < 0.05) at each soil depth than in other natural grassland communities, and there was no significant
difference between the other natural grassland communities. The SOC content of the natural secondary
forest and shrub communities was significantly higher (p < 0.05) than the SOC content of artificial
forest and shrub communities, respectively. In addition, the SOC content of each soil layer was not
significantly different between artificial forest communities (except for the RAS1) or between artificial
shrub communities.

The SOC content of the different plant communities ranged from 4.86 to 52.89 g¨kg´1 at 0–5 cm,
from 3.89 to 26.71 g¨kg´1 at 5–10 cm, and from 2.71 to 18.44 g¨kg´1 at 10–20 cm (Table 2). As soil
depth increased, the soil organic carbon concentration decreased (p < 0.05), but this change was not
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significant for the grassland communities. SOC content was significantly higher (p < 0.05) in the
0–5 cm soil layer than in the deeper soil layers of the forest community (except for RAS1) and shrub
communities (except for the HAS).

Table 2. Average values and standard deviations of the SOC content of different soil layers under
different plant communities.

Vegetation Type Plant Community e
SOC (g¨ kg´1) f

0–5 cm 5–10 cm 10–20 cm

Slope cropland P 4.86 ˘ 0.98 a,A 4.34 ˘ 0.71 a,A 2.71 ˘ 0.52 a,A

Natural grassland

A 6.36 ˘ 1.11 a,A 5.54 ˘ 1.22 a,A 3.78 ˘ 0.68 a,A

SL 5.02 ˘ 0.16 a,A 3.89 ˘ 0.67 a,A 3.51 ˘ 0.89 a,A

AS 9.63 ˘ 0.26 b,A 8.20 ˘ 0.33 b,A 6.28 ˘ 0.73 b,A

AAB 5.30 ˘ 0.78 a,A 4.27 ˘ 0.95 a,A 3.79 ˘ 0.97 a,A

Artificial shrubland
HAS 11.52 ˘ 2.34 b,A 8.14 ˘ 2.01 b,A 5.65 ˘ 1.02 a,b,B

CAS 11.96 ˘ 1.79 b,A 7.05 ˘ 0.58 b,B 6.25 ˘ 0.33 b,B

Natural shrubland
SAS 18.79 ˘ 1.98 c,A 11.61 ˘ 1.21 c,B 8.55 ˘ 1.52 c,C

SC 17.18 ˘ 2.23 c,A 12.52 ˘ 3.28 c,B 8.45 ˘ 1.72 c,C

Artificial forestland
AAS 10.19 ˘ 1.72 b,A 5.75 ˘ 0.60 a„bB 5.44 ˘ 0.68 a,b,B

RAS1 5.95 ˘ 0.64 a,A 4.49 ˘ 0.49 a,A 4.01 ˘ 0.42 a,b,A

RAS2 12.60 ˘ 1.01 b,A 6.05 ˘ 0.98 a,b,B 4.64 ˘ 0.64 a,b,B

Natural forestland
ASC 37.25 ˘ 1.45 d,A 24.28 ˘ 1.78 d,B 15.34 ˘ 1.26 d,C

QSC 52.89 ˘ 1.39 d,A 26.71 ˘ 4.71 d,B 18.44 ˘ 3.07 d,C

A,B,C Different letters in the superscript within columns indicate significant different values according to HSD
test at p < 0.05. a,b,c,d Different letters in the superscript within rows indicate significant different values
according to HSD test at p < 0.05. e P: slope cropland cultivated with P. miliaceum or Z. mays (20 years);
A: Artemisia scoparia (3–5 years); SL: S. bungeana + L. davurica (10–20 years); AS: A. gmelinii + S. bungeana
(25–30 years); AAB: A. gmelinii + A. giralaii + B. ischaemum (30 years); HAS: H. rhamnoides ´ A. gmelinii +
S. bungeana (15–20 years); CAS: C. intermedia ´ A. gmelinii + S. bungeana (15–20 years); SAS: S. viciifolia ´
A. gmelinii + S. bungeana (30–40 years); SC: S. julianae ´ C. lanceolata (30–40 years); AAS: A. sibirica ´ A. gmelinii
+ S. bungeana (15 years); RAS1: R. pseudoacacia ´ A. gmelinii + S. bungeana (6–8 years); RAS2: R. pseudoacacia
´ A. gmelinii + S. bungeana (15 years); ASC: A. buergerianum ´ S. julianae ´ C. lanceolata (40–50 years); QSC:
Q. liaotungensis ´ S. julianae ´ C. lanceolata (60–70 years). f Soil organic carbon.

3.2. Extreme Rainfall and Soil Erosion

In July 2013, the Yanhe watershed experienced consecutive heavy rainfalls with broad range, long
duration and high intensity. At each meteorological station (Figure 1), the total quantity of rainfall in
July ranged from 327 to 793 mm, the frequency of rainstorms ranged from two to eight storms, and
this series of storms accounted for 65%–100% of total rainstorms amount (126–678 mm) for the year.
The Yan’an station received the highest rainfall in July, which exceeded the average annual rainfall
(500 mm). This was the highest rainfall since 1945 in this watershed. The total annual precipitation at
each meteorological station ranged from 612 mm to 1357 mm, primarily concentrated between June
and September, and represented 92%–96% of the total annual precipitation (Table 3).

Under the extreme rainfall events of 2013, the soil loss of the 13 communities ranged from
550 t¨km´2¨yr´1 to 5145 t¨km´2¨yr´1. The QSC community had the lowest soil loss and was used
as a reference to calculate the relative soil loss of the other plant communities. The relative soil loss
within the four natural grassland communities ranged from 3.1 to 4.1, and the A community had
the lowest resistance to erosion. There was no significant difference in relative soil loss between the
two natural shrub communities, which showed a higher resistance to erosion than the grassland
communities. Relative soil loss of the secondary forest communities was 1 and 1.5 and showed the
greatest efficacy for reducing erosion. In the two artificial shrub communities, relative soil loss was
3 and 3.9. Relative soil loss of the artificial forest communities ranged from 3.4 to 9.4, and the 6–8 years
R. pseudoacacia community showed the lowest resistance to erosion among the 13 plant communities
(Figure 2).
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Table 3. Rainfall characteristics of the eight meteorological stations from May to October of 2013 in the Yanhe Watershed.

Month
Yanan Ansai Yanchang Jingbian Zhidan Zichang Yanchuan Ganquan

Tr a Rr b Tr Rr Tr Rr Tr Rr Tr Rr Tr Rr Tr Rr Tr Rr

May 29 26 3 8 40 19 20 52
June 141 51 (1) c 150 65 140 156 127 89 109 50 (1)
July 793 568 (8) 524 232 (3) 327 213 (3) 488 231 (4) 545 212 (3) 436 126 (2) 666 383 (5) 488 231 (3)

August 262 59 (1) 205 120 (2) 98 213 54 (2) 218 80 (1) 143 80 213
September 94 117 100 152 147 138 156 148

October 38 23 19 37 22 27 24 30
Total 1357 678 (10) 1045 352 (5) 612 213 (3) 1038 285 (6) 1128 292 (4) 890 126 (2) 1035 383 (5) 1040 281 (4)

a Total rainfall (mm) at each meteorological station in each month. b Rainfall (mm) from individual rainfall events greater than 50 mm at each meteorological station in each month.
c Data in parentheses indicate the number of rainstorm events.
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Figure 2. Soil erosion and relative soil loss in different plant communities under the extreme rainfall
events during 2013. Vertical columns and black circles represent soil erosion and relative soil loss,
respectively. Different lowercase letters indicate significance at p < 0.05 for relative soil loss between
different plant communities. A: Artemisia scoparia (3–5 years); SL: S. bungeana + L. davurica (10–20 years);
AS: A. gmelinii + S. bungeana (25–30 years); AAB: A. gmelinii + A. giralaii + B. ischaemum (30 years);
HAS: H. rhamnoides ´ A. gmelinii + S. bungeana (15–20 years); CAS: C. intermedia ´ A. gmelinii +
S. bungeana (15–20 years); SAS: S. viciifolia ´ A. gmelinii + S. bungeana (30–40 years); SC: S. julianae ´

C. lanceolata (30–40 years); AAS: A. sibirica ´ A. gmelinii + S. bungeana (15 years); RAS1: R. pseudoacacia
´ A. gmelinii + S. bungeana (6–8 years); RAS2: R. pseudoacacia ´ A. gmelinii + S. bungeana (15 years);
ASC: A. buergerianum ´ S. julianae ´ C. lanceolata (40–50 years); QSC: Q. liaotungensis ´ S. julianae ´

C. lanceolata (60–70 years).

3.3. Soil Organic Carbon Loss

In 2013, with extreme rainstorms, the soil organic carbon loss of the 13 communities ranged from
8.67 t¨ km´2¨ yr´1 to 50.34 t¨ km´2¨ yr´1. The QSC community experienced the lowest soil erosion and
had the highest soil organic carbon content, and was also used as a reference to calculate the relative
soil organic carbon loss of the other communities. The relative soil organic carbon loss ranged from
0.30 to 0.62 for the grassland communities, the AS community showed the greatest loss, and the SL
community showed the least loss. No significant difference was found between natural and artificial
shrub communities, and the relative SOC loss ranged from 0.54 to 0.89. In artificial forest communities,
significant differences were found between the R. pseudoacacia communities (1.73 for 15 years and
1.05 for 6–8 years) and the AAS community (0.66). No significant difference was found between the
two natural forest communities (1.05 and 1). The 15 years R. pseudoacacia community had the highest
relative SOC loss between the 13 plant communities (Figure 3).
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Figure 3. Soil organic carbon loss and relative soil organic carbon loss in different plant communities
under extreme rainstorm events during 2013. Vertical columns and black circles represent soil organic
carbon loss and relative soil organic carbon loss, respectively. Different lowercase letters indicate
significance at p < 0.05 for relative soil organic carbon loss between different plant communities.
A: Artemisia scoparia (3–5 years); SL: S. bungeana + L. davurica (10–20 years); AS: A. gmelinii + S. bungeana
(25–30 years); AAB: A. gmelinii + A. giralaii + B. ischaemum (30 years); HAS: H. rhamnoides ´ A. gmelinii
+ S. bungeana (15–20 years); CAS: C. intermedia ´ A. gmelinii + S. bungeana (15–20 years); SAS: S. viciifolia
´ A. gmelinii + S. bungeana (30–40 years); SC: S. julianae ´ C. lanceolata (30–40 years); AAS: A. sibirica ´

A. gmelinii + S. bungeana (15 years); RAS1: R. pseudoacacia ´ A. gmelinii + S. bungeana (6–8 years); RAS2:
R. pseudoacacia ´ A. gmelinii + S. bungeana (15 years); ASC: A. buergerianum ´ S. julianae ´ C. lanceolata
(40–50 years); QSC: Q. liaotungensis ´ S. julianae ´ C. lanceolata (60–70 years).

4. Discussion

4.1. Soil Organic Carbon Sequestration by Vegetation

Land use changes have significant effects on SOC concentrations and the carbon cycle of
terrestrial ecosystems. Total SOC concentrations and stocks decreased significantly after grassland was
converted to cropland in a semi-arid grassland [51]. In northwestern Spain, Mireia et al. [52] reported
approximately 67% of the total carbon loss in the topsoil was a result of the conversion of natural
Quercus ilex forest into cropland, and after reforestation with Pinus halepensis, the soil organic carbon
increased significantly. In our study, the soil organic carbon (SOC) content of all the vegetation types
were higher than slope cropland (Table 2). This corresponds to the results of most studies, which have
demonstrated that revegetation increases the soil organic carbon concentrations [5,27,53]. However,
differences in SOC content were also found among vegetation types, the rank of average SOC content at
each soil depth was as follows: natural secondary forestland > natural shrubland > artificial shrubland
> artificial forestland > natural grassland > slope cropland. This order implies that the SOC content was
improved through vegetative recovery and that natural secondary forestland had the greatest capacity
to store soil organic carbon, particularly in the 0–5 cm soil layer. Compared with slope cropland,
the SOC concentration in the surface soil (0–5 cm) increased by 3.29%–98.15%, 253.50%–286.63% and
666.46%–988.27% when it was converted to natural grassland, natural shrubland and natural secondary
forestland, respectively. Vegetative cover has fundamental effects on soil properties [54], the lower
plant and litter cover of natural grassland communities would have limited the contribution of organic
matter to the soil (Table 1). The dense canopy structure and species composition of natural shrubland
and forestland, with a higher ability to increase the amount of organic matter in the soil and reduce
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SOC decomposition rates than natural grassland, have been found to have a positive effect on SOC
accumulation [55].

With the conversion of slope cropland to artificial shrubland and forestland, the SOC content of
the soil profile (0–20 cm) also showed increased tendency (Table 2). Similar results were found by
Wang et al. [21], who showed that the surface (0–20 cm) SOC content increased over eight years of
revegetation when cultivated crops were converted to grass (primarily Artemisia Linn, couch grass and
small weeds), artificial shrubs (Prunus armniaca) and immature forest plantations (Robinia pseudoacacia).
In our study, compared with slope cropland, the SOC content for R. pseudoacacia land was not
significantly higher after six to eight years of revegetation, but a significant increase was observed at
the soil surface (0–5 cm) after 15 years (Table 2). Lu et al. [56] found that the time required for SOC
to transition from source to sink in the Loess Plateau region was three to eight years of afforestation.
Qin et al. [57] found that soil organic carbon density (SOCD) in the 0–20 cm soil layer of an immature
woodland (<10 a) was lower than that of cultivated land, but the SOCD of mature woodland (>30 a)
was 59.54% higher than that of cultivated land. These studies and our data suggest that the time since
afforestation should be considered when evaluating the SOC sequestration capacity.

4.2. Soil Organic Carbon Loss through Soil Erosion

With the implementation of “Green for Green” project (GFG), large areas of slope cropland were
converted to trees, shrubs, or grasses within the Loess Plateau region [32,58]. Plant structure and
cover were the keys to reducing runoff and soil loss by improving water infiltration, reducing the
impact of water droplets, intercepting rain and snow and physically stabilizing the soil with roots and
leaf litter [59,60]. In the grasslands, biocrust covered most of the soil surface, which played a more
important role in soil erosion control than the vascular plant canopy in the hilly Loess Plateau [61].
Pickup et al. [62] found that sediment moves as a series of scour-transport-fill sequences in the arid
zone. In our study, soil erosion and deposition coexisted on the hillside, but erosion dominated in all
the plant communities in the year of 2013 with extreme rainstorm events in the Yanhe watershed.

Under extreme rainstorm events in 2013, grass communities showed a lower resistance to soil
erosion (Figure 2), which may be attributed to the uneven distribution of biocrust and plants on
the one hand and the low resilience to physical disturbance and increasing human activity on the
other hand; similar results were found in another arid zone by Warren [63]. Shrub communities
(except for the CAS), which had a lower soil erosion than grassland communities, were better in
protecting the soil (Figure 2). Wei et al. [42] reported that H. rhamnoides, with a mean canopy cover
of 92% and a litter depth 30 mm, is a powerful agent of erosion control during extreme hydrological
events (maximum 30 min rainfall intensity >0.55 mm/min). However, H. rhamnoides did not achieve
a similar effectiveness in controlling soil erosion in our study, which can be accounted for by the
significantly lower canopy cover and litter depth (40% and 1.5 mm, respectively). Natural secondary
forest communities, especially the QSC, were most effective at protecting the soil from erosion, which
can be unequivocally attributed to the dense canopy structure and the higher litter cover (Table 1).
Similar results in southeastern Spain suggest that forests with canopies of 60%–85% can effectively
reduce rainfall erosivity [59]. It has been shown that afforestation results in soil desiccation and
has no additional advantages in terms of species diversity and soil erosion resistance over natural
recovery [27]. In our study, the 6–8 years R. pseudoacacia community, with lower tree cover, grass cover
and litter cover, had the highest soil erosion (Table 1; Figure 2). This is consistent with the result that
young woodland (1–6 years) showed higher soil erosion than ripewood (6–15 years) [48].

The soil carbon pool is tightly linked to soil erosion, and soil erosion can result in net carbon loss
from the carbon pool [6,8,22]. However, revegetation reduces soil erosion and enhances soil organic
carbon storage capacity [21,64]. In our study, natural secondary forest communities showed higher
SOC content, and artificial R. pseudoacacia communities showed higher relative soil loss and carbon loss.
More carbon-concentrated plant communities may also produce greater SOC loss when water erosion
takes place at the soil surface during extreme rainstorm events, as was found by Nadeu et al. [23] in a
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Mediterranean catchment. Artificial forests have poor cover, limited understory and compacted soil
due to water shortages in the loess hilly area [5], and soil erosion cannot be effectively controlled. Thus,
extreme rainfall events may currently play a key role in soil organic carbon loss in the hill and gully
areas of the Loess Plateau.

5. Conclusions

These results might have implications for vegetation restoration projects with respect to
revegetation pathway selection and global climate change mitigation. We can conclude from the
present study that vegetation restoration can increase or significantly increase the SOC content of
surface soil (0–20 cm), especially in the 0–5 cm soil layer, and natural vegetative recovery was a
more effective pathway for increasing SOC concentration and enhancing SOC storage than artificial
vegetative recovery in the Chinese loess hill and gully region.

Soil erosion and erosion-induced carbon loss is tightly linked with vegetation types under extreme
rainstorm events. Grassland communities, with a higher soil loss and a lower SOC content, had less
SOC loss; shrub communities were intermediate in SOC content and loss; artificial R. pseudoacacia
communities, with higher soil loss, produced greater SOC loss; and natural secondary forest
communities, with higher carbon-concentrated soils and SOC storage capacity, may produce more
SOC loss from water erosion under extreme rainstorm events.
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