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Soil hydraulic conductivity (Ks) is a crucial soil physical property that not only influences soil hydrological
processes, but also the planning for vegetation recovery, irrigation practice and drainage design. However, Ks

data are often lacking at large-scale soil database due to difficulties in direct measurement that is often labour in-
tensive, time consuming and cost inefficient. The objective of this study was to compare the performance of differ-
ent emergingmethods [Multiple linear regression (MLR) and artificial neural network (ANN)] of Ks prediction. The
pedotransfer function (PTF) is one such method that is based on selected factors closely correlated with Ks at re-
gional scale. We collected disturbed and undisturbed soil samples in the 0–40 cm soil layer at 243 sites across
the entire typical Loess Plateau of China (430,000 km2) and then measured Ks and the potentially related factors.
The results showed that Ks was normally distributed with moderate a spatial variation (CV = 67%). Correlation
analysis indicated that bulk density (BD), saturated soil water content (SSWC), clay content (Clay), silt content
(Silt) and latitude were closely correlated (p b 0.05) with Ks. Although the accuracies of MLR and ANN were
equal in terms of estimating Ks, the stability of PTF developed via ANN was not as good as that of MLR. Thus PTF
developed via MLR, which included BD, Silt and Clay, was considered as the best model for estimating Ks. There
is a need to closely monitor the stability and repeatability of PTF during comparison and determination of PTF.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Saturated soil hydraulic conductivity (Ks) is an essential parameter
for soil andwater management problems related to ecology, agriculture
and the environment (Yao et al., 2015). It is indispensable in the assess-
ment of the processes of infiltration, irrigation and drainage (Aimrun
et al., 2004). Ks is one of themost sensitive input parameters for distrib-
uted hydrological models (Wang et al., 2013b). Ks is also widely applied
in simulating heat andmass transport in top soils and in describing and
predicting water and solute transports in the soil (Cornelis et al., 2001).

Although there is major advancement in direct determination tech-
niques of Ks, such techniques are still labour intensive, time consuming
and cost inefficient, especially for larger scale applications (Saxton and
Rawls, 2006). In addition, direct determination of Ks at 200 cm soil
depth or more are usually impracticable. As a result, there is hardly
readily available Ks data to meet simulation demands. Furthermore,
there is the need to evaluate the potential effects of regional water
cycle and solute transport in deep soils like in the Loess Plateau of
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China (Wang et al., 2013a), Southern Australia (Robinson et al., 2006)
and Eastern Amazonia (Nepstad et al., 1994).

As an alternative, pedotransfer function (PTF), which uses predictive
functions and soil survey data to determine Ks is widely accepted in soil
science and engineering community (Duan et al., 2012; Minasny and
Mcbratney, 2000; Yao et al., 2015; Chapuis, 2012). PTF is a good tool
for assessing desired accuracy and reliability of specific applications
(Wösten et al., 2001). Generally, soil hydraulic properties are influenced
by the combined effects of soil parentmaterials, vegetation, topography
and time (Brantley, 2008). All these factors potentially affect Ks by
influencing soil porosity and pore size distribution. Studies have
shown that the systematic variation in Ks is mainly explained by soil
texture and porosity (Cosby et al., 1984; Pachepsky and Rawls, 1999;
Rawls et al., 1993). Other studies have demonstrated the relevance of
soil organic carbon (SOC) and bulk density (BD) in the prediction of Ks

(Wösten et al., 1999). Yet other studies have concluded that soil hydrau-
lic properties like saturatedmoisture, field capacity (Saxton et al., 1986;
Pachepsky and Rawls, 1999) and soil organic matter are important in
predicting Ks (Wösten et al., 1999).

The development of PTF has greatly facilitated awidespread applica-
tion of models to simulate water movement and solute transport in the
field and at larger scales. In practice, data generated using PTF is not eas-
ily transferable to other bioclimatic zones (Mcbratney et al., 2002; Vos
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Fig. 1.Map depicting the 243 sampling sites along with the distribution of mean annual temperature (MAT) and precipitation (MAP) across the Loess Plateau in China.

Table 1
Descriptive statistics for soil hydraulic conductivity and other measured soil properties
across the typical Loess Plateau (n = 729).

Variables Minimum Maximum Mean SD CV Skewness Kurtosis

Ks (mm/min) 0.01 0.99 0.37 0.25 67 0.69 −0.21
BD (g/cm3) 0.97 1.79 1.32 0.14 11 0.50 0.38
FC (%) 0.04 0.38 0.19 0.04 25 0.02 0.61
SSWC (%) 0.12 0.61 0.38 0.08 21 −0.14 0.40
D 2.21 5.5 2.51 0.13 5 21.25 519.05
Clay (%) 0.010 32.67 17.41 4.69 27 −0.02 −0.07
Silt (%) 2.04 76.01 63.33 9.85 16 −2.49 8.54
Sand (%) 2.82 97.97 19.24 13.43 70 1.91 5.48
Latitude (°) 34.08 40.42 36.29 1.43 2 0.73 −0.14
Longitude (°) 102.84 113.28 108.80 2.60 4 −0.38 −0.87

SD standard deviation, CV coefficient of variation (%)
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et al., 2005). As climate influences the development of soil structure, it
has adverse effect on PTF applied outside the region of design (Lilly
et al., 2008). Therefore, it is important to make direct local measure-
ments to develop PTF for regions where Ks model has not been applied
before.

The Loess Plateau of China (about 62 × 104 km2) has thick loess
deposits, intensely soil erosion, severe water shortage and fragile eco-
system (Chen et al., 2007; Wang et al., 2008b). Soil moisture in the re-
gion comes mainly from natural recharge from limited precipitation,
55–78% of which falls in June to September. The hydrological processes
directly affect vegetation rehabilitation and soil water conservation, a
major issue of concern in the Loess Plateau for a several decades now.
However, studies in the region have largely focused on spatial–temporal
variability ofKs (Huet al., 2012; Zhou et al., 2009;Wang et al., 2013b; Lei
et al., 2012), with even fewer studies emphasizing Ks simulation (Zhao
et al., 2014).

Ks studies in recent decades were focused on relatively small spatial
scales (generally b2 km2), virtually insufficient for understanding large-
scale hydrological processes. There is therefore the need for information
about large-scale prediction of Ks and reliable PTF to more completely
understand hydrological processes in the Loess Plateau region. Also re-
cent developments in digital soil mapping and large-scale modelling
emphasize the need for reliable PTF (Vereecken et al., 2010).

The objectives of this study were to: (1) characterize regional-scale
variations in Ks across the Loess Plateau; (2) determine the primary
factors controlling regional distribution of Ks; and (3) develop a reliable
and stable PTF for the estimation of Ks in the Loess Plateau region.

2. Materials and methods

2.1. Description of study area

This study was conducted in a typical Loess Plateau (Yang et al.,
1988) that covers about 2/3rd (43 × 104 km2) of the Loess Plateau
region (34–45°5′N, 101–114°33′E). The typical Loess Plateau region is
a spatial zonebetween the provinces of Shanxi, Shaanxi, Gansu, Ningxia,
Henan and Inner Mongolia, where the loess is thickest (30–80 m)
and most continuous with severe erosion and geomorphic landforms
(Jia et al., 2015). It is located at an elevation of 200–300 m a.s.l. with
“yuans” (large flat surfaces with little or no erosion), ridges, hills and
gullies as the main geomorphic landforms. Mean annual precipitation
(MAP) ranges from 150mm in the northwest with a mean annual tem-
perature (MAT) of 3.6 °C to 800 mm in the southeast with an annual
mean temperature of 14.3 °C (Fig. 1). The general transformation of
the vegetation zone from the southeast to northwest is from the forest
to forest-steppe to typical-steppe to desert-steppe and then to steppe-
desert (Shi and Shao, 2000; He et al., 2003; Liu et al., 2013).
2.2. Soil sampling and data collection

2.2.1. Soil sampling
To obtain accurate Ks values, an intensive soil sampling scheme was

designed, covering the entire typical Loess Plateau region. Formore con-
venient access to the sampling sites, sampling routeswere chosen along
road transportation systems in the Loess Plateau. Every two adjacent
sampling routes were about 40 km apart and the sites along the sam-
pling route also about 40 km away from each other. For areas with
more complex landscape and geomorphology, the sampling distance
was reduced to include at least one randomly selected site for better
representation of the area. Each sampling site was randomly selected
and located using GPS receiver (5 m precision in the horizontal direc-
tion) to represent the main land use, soil type and topography within
the range of vision. Sampling sites were selected at least 150 m away
from the roads to reduce the effect of the road on conditions at the
site (Fig. 1). Undisturbed soil cores were taken at each site at the
0–10 cm, 10–20 cm and 20–40 cm soil layer depths using metal cylin-
ders (5 cm in diameter and 5 cm in length) to measure bulk density
(BD), saturated soil water content (SSWC), field capacity (FC) and KS.
Disturbed soil samples were also collected at the corresponding soil
depths to determine soil particle composition in the three layers.

Image of Fig. 1


Table 2
Pearson's correlation coefficients between saturated hydraulic conductivity (Ks) and their related factors in the typical Loess Plateau.

Variable Ks BD FC SSWC D Clay Silt Sand Latitude Longitude

Ks 1 −0.49⁎⁎ 0.07 0.48⁎⁎ 0.01 −0.09⁎ −0.10⁎⁎ 0.08⁎ −0.12⁎⁎ 0.03
BD 1 −0.26⁎⁎ −0.98⁎⁎ 0.01 −0.02 −0.23⁎⁎ −0.05 0.32⁎⁎ 0.07
FC 1 0.28⁎⁎ 0.27⁎⁎ 0.59⁎⁎ 0.57⁎⁎ −0.72⁎⁎ −0.23⁎⁎ −0.65⁎⁎

SSWC 1 −0.01 0.02 0.25⁎⁎ 0.041 −0.37⁎⁎ −0.09⁎

D 1 0.27⁎⁎ 0.23⁎⁎ −0.34⁎⁎ −0.11⁎⁎ −0.27⁎⁎

Clay 1 0.79⁎⁎ −0.70⁎⁎ −0.19⁎⁎ −0.55⁎⁎

Silt 1 −0.65⁎⁎ −0.20⁎⁎ −0.58⁎⁎

Sand 1 0.19⁎⁎ 0.79⁎⁎

Latitude 1 0.35⁎⁎

Longitude 1
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Overall, the sample collection was done over a period of four months
(June to October 2012) and the data were collected from a total of
729 undisturbed soil cores and disturbed soil samples for laboratory
analysis.

2.2.2. Laboratory analysis
Ks for the undisturbed soil cores was determined using the constant

head method (Wang et al., 2013b). The soil cores were oven-dried
at 105 °C for 48 h, then weighed to calculate BD and SSWC (Wang
et al., 2008a). The disturbed soil samples were air-dried and pass
through 1.0mmmesh tomeasure clay, silt and sand content (USDA tax-
onomy) using laser diffraction (Mastersizer 2000,Malvern Instruments,
Malvern, England) (Liu et al., 2005). The longitudinal and latitudinal co-
ordinates of each site were determined using GPS receiver. Then the
fractal dimensions (D) were calculated based on the soil fractal model
(Tyler and Wheatcraft, 1992).

2.3. Data analysis

2.3.1. Pedotransfer function development
For each soil layer (0–10, 10–20 and 20–40 cm), five soil properties

(BD, D, Clay, Silt and Sand), two soil hydraulic parameters (FC and
SSWC) and two geographical factors (longitude and latitude) were
obtained to predict Ks. Standardization was done to limit the effect of
dimension, variation and numerical magnitude of the variables on the
data using the equation described by Jia et al. (2012). Finally, the 729
datasets were used to develop PTF using by bothmultiple linear regres-
sion (MLR) and artificial neural network (ANN) methods.

MLR is a traditional PTF development method with strong applica-
bility that is a major branch of modern applied statistics. It has been
widely used in soil science for developing PTF by predicting soil param-
eters (Parasuraman et al., 2006; Agyare et al., 2007; Motaghian and
Table 3
Root mean square error (RMSE), coefficient of determination (R2) and the change propor-
tion developed by MLR and ANN, respectively.

Model Input variable Index Change
proportion (%)

RMSE R2 RMSE R2

M1 SSWC + Silt + Clay 0.208 0.310 − −
M2 BD + Silt + Clay 0.209 0.309 −0.661 0.483
M3 BD + Silt + Clay + SSWC 0.210 0.307 −0.765 0.918
M4 BD + Silt + Clay + Sand 0.209 0.307 −0.659 0.921
M5 BD + Silt + Clay + SSWC + Sand 0.210 0.306 −0.870 1.477
M6 SSWC + Silt + Sand 0.213 0.295 −2.370 4.787
A1 SSWC + Silt + Clay 0.210 0.306 − −
A2 BD + Silt + Clay 0.212 0.305 −0.727 0.428
A3 BD + Silt + Clay + Sand 0.211 0.304 −0.443 0.730
A4 BD + Silt + Clay + SSWC + Sand 0.212 0.303 −0.728 0.942
A5 BD + Silt + Clay 0.212 0.297 −0.897 2.901
A6 SSWC + Silt + Sand 0.213 0.297 −1.444 2.943

The hidden layers for A1, A2, A3, A4 and A6 have 1 layer and 4 neurons and that for A5 has
2 layer and 4 neurons.
Mohammadi, 2011). Recently, the ANN approach has been successfully
used as a suitable data processing technique for modelling relationships
between soil features and other measurable properties in PTF develop-
ment (Pachepsky and Rawls, 1999; Baker and Ellison, 2008; Minasny
and Mcbratney, 2000). ANN works similarly as the human brain and
possesses similar functions of biological learning and memorization
process. The feed-forward ANN model applied for this study consisted
mainly of non-linear processing elements called simple neurons,
which are organized into layers and interconnected as a network by
weight. For ANN modelling, the number of hidden layers and the num-
ber of neurons in each hidden layer were designed via trial-and-error
(Xiong et al., 2011). Initial values of the weights in each layer were
assigned randomly and then determined by an error–correction learn-
ing rule. A pure linear function was selected for the output layer,
while sigmoid activation function was assigned to the hidden layer.

The 729 dataset was randomly divided into two subsets, with
subset-1 having 583 PTF developing records (80% of the total dataset)
and subset-2 having 146 validation records (20% of the total dataset).
A total of 400 replicates of each subset were generated to limit error
due to bias towards any particular calibration–validation dataset pairs
and also to evaluate the stability of the PTF developed by different
methods. The accuracy of the PTF was evaluated using the coefficient
of determination (R2) and the root mean square error (RMSE). Akaike's
information criterion (AIC) was used to judge the superiority of the sta-
tistical model simulation results and the practicability of the models
(Burnham and Anderson, 2004). The equations of R2, RMSE and AIC
are documented by Wang et al. (2014) and Burnham and Anderson
(2004).

2.3.2. Used software
The data were analysed using different software packages. The de-

scriptive statistical parameters (mean,maximum,minimum, Skewness,
Kurtosis and SD) and Pearson's correlation coefficients were deter-
mined using SPSS 14.0 (version) and coefficient of variance (CV) and
AIC were calculated in Microsoft EXCEL (2013). MLR and ANN were
measured using MATLAB (version R2009a), GIS software (ESRI®
ArcMap™ 9.2) was used for maps and plots were designed in OriginPro
(Version 9.2).

3. Results and discussion

3.1. Descriptive statistics and Ks factors

3.1.1. Descriptive statistics
Descriptive statistics and overall variation in measured soil proper-

ties across the typical Loess Plateau region are shown in Table 1. Ks var-
iedwithin 0.01–0.99mm/minwith amean of 0.37mm/min, amoderate
variation of 67%. The percent variation in BD, Silt, SSWC, FC, Clay and
Sand was 11%, 16%, 21%, 25%, 27% and 70%, respectively. While latitude,
longitude and fractal dimension (D) hadweak variations— 2%, 4% and 5
%, respectively.



Fig. 2. Box andwhisker plots showing the distribution, SD, median andmean of the distributions of Akaike's information criterion (AIC), root mean square error (RMSE) and coefficient of
determination (R2) of 400 times of validation for M1 to M6 model conditions.

4 C. Zhao et al. / Catena 143 (2016) 1–6
BD had the least variation (11%) among all the measured soil physi-
cal variables (11–70%) while FC had the highest variation. This observa-
tion was in agreement with that by Wang et al. (2014) for the entire
Loess Plateau region in China. The higher degree of variation in the
parameters was possibly due to the differences in fluctuations in the
data at small scale and large scale (Pachepsky et al., 2001; Zeleke and
Bing, 2005). Based on the values for skewness and kurtosis in Table 1,
Ks and the other variables (e.g., BD, Clay, SSWC, FC, Silt and sand)
were normally distributed, except D.

3.1.2. Ks factors
The degree of linear association of Ks with other measured soil

properties was determined using Pearson's correlation analysis
(Table 2). Ks was significantly correlated with 6 of the 9 measured
variables— positively correlated with SSWC and Sand, while negatively
correlated with BD, Clay, Silt and Latitude. However, BD, SSWC, Silt and
Latitude had better correlation with Ks (p b 0.01) than Clay and Sand
(p b 0.05). The correlation of Ks with FC, D and Longitude was generally
weak.

D is an important descriptive variable for soil particle distribution
(Su et al., 2004). In this study, D was significantly correlated (p b 0.01)
with Clay, Silt and Sand. Then Ks also had a significant correlation
(p b 0.05) with Clay, Silt and Sand. Based on the correlation between
Ks and D, however, D was still not considered as a good parameter for
Fig. 3. Box andwhisker plots showing the distribution, SD, median andmean of the distribution
determination (R2) of 400 times of validation for A1 to A6 model conditions.
the prediction of Ks and could not be used in the place of Clay, Silt or
Sand in developing PTF.

3.2. Compartments of PTF

3.2.1. MLR/ANN-driven PTF
In general, the performance of PTF varied with change of data used

to develop and validate PTF. The 400 randomly selected datasets were
used to minimize errors. Among the different combinations of the six
factors, a stepwise process was conducted and the six best PTFs (rela-
tively bigger R2 and smaller RMSE) developed by MLR and ANN select-
ed. For ANN, the number of hidden layers and number of neurons were
further optimised to have a good performance (Table 3). The perfor-
mance of PTFs developed byMLRwasbetter than that of PTFs developed
by ANN. However, the difference in the two methods was not signifi-
cant, as indicated by the percent change (b5%) in RMSE and R2. The
best R2 value (0.31) for all the PTFs was under M1 (combination of
SSWC, Silt and Clay) model conditions (Table 3), the relatively small
value mainly due to heterogeneity in Ks, soil texture, landscape and
climatic conditions across the Loess Plateau (Wang et al., 2013b). Due
to the insignificant difference in the accuracy of the simulation results,
all the twelve PTFs could be used in predicting Ks in the Loess Plateau
of China. D due to the large size of the study area (N6 km2), direct mea-
surements can be financially costly, and time and labour consuming. A
s of Akaike's information criterion (AIC), root mean square error (RMSE) and coefficient of

Image of Fig. 2
Image of Fig. 3


Table 4
Coefficients of the variables under M2-1 to M2-6 model conditions.

Variable C BD Silt Clay

M2-1 0.873 −0.555 −0.399 0.224
M2-2 0.868 −0.557 −0.408 0.231
M2-3 0.872 −0.565 −0.413 0.236
M2-4 0.877 −0.572 −0.417 0.237
M2-5 0.882 −0.581 −0.422 0.240
M2-6 0.891 −0.637 −0.470 0.316

“C” is a constant term of model.
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PTF with a relatively low R2 is reliable for application in estimating soil
water moment at large scale.
Fig. 5. Plot of the coefficient of determination (R2) of 20 randomly selected validations for
M2-1 to M2-6 model conditions.
3.2.2. MLR/ANN-driven PTF stability
The stability of PTF performance has largely been overlooked in the

previous studies (Agyare et al., 2007; Minasny and Mcbratney, 2000;
Cornelis et al., 2001). The accuracy of PTF is not the only standard
used to isolate the best PTF. Other factors such as PTF reliable and
user-friendliness are also equally important. The stability of the perfor-
mance, the number of variables and the ease ofmeasurement of the var-
iable should also take into account. Thus the distributions of AIC, RMSE
and R2 (after repeating 400 times during development and validation)
were calculated to isolate the best PTF for use in predicting Ks in the
Loess Plateau of China.

Based on the results, there were differences among the six MLR-
driven PTFs, but not obvious in terms of range and SD of AIC, RMSE
and R2 after 400 times of development and validation (Fig. 2). For
ANN, however, the SDs of AIC, RMSE and R2were similar and the ranges
of AIC, RMSE and R2 obviously different for the PTFs. In short, the distri-
butions of AIC (A2, A4), RMSE (A2, A4) and R2 (A2, A3) were steadier
than those of the other PTFs (Fig. 3a, b & c). Generally, AIC, RMSE and
R2 of PTF developed via MLR had smaller range than that developed
via ANN (Figs. 2, 3a, b & c). The unsteadiness, mainly shown in the
wider ranges of AIC and RMSE, was bigger than the mean value, while
that of R2 range was smaller than the mean value. The ranges between
the best and mean value for AIC, RMSE and R2 were similar. Thus
there was a high possibilities that the accuracies of A1, A3, A5 and A6
were lower than the average value. Although A2 and A4 distributions
were better, they still failed tomatchwith the stability of PTF developed
via MLR. Subsequently, M2 was selected as the best PTF for: 1) relative
steadiness of performance; 2) smallest number of variables and easiest
value measurement; 3) analogous accuracy performance to M1.
Fig. 4. Box andwhisker plots showing the distribution, SD, median andmean of the distribution
determination (R2) of 400 times of validation for M2-1 to M2-6 model conditions.
3.3. Best PTF variable coefficients

The coefficients of the variables varied with change in the data se-
lected to develop PTF. A total of 400 times of random simulation with
different coefficients were conducted to evaluate the stability of PTF
through various combinations of BD, Silt and Clay. To find the best com-
bination of coefficients, the 400 PTFs were realigned in a descending
order of R2. The first and last PTF were selected as M2-1 and M2-6, re-
spectively. The coefficients for the other variables in M2-2, M2-3, M2-
4 and M2-5 were calculated use the mean values of the corresponding
variables in the top 25%, 50%, 75% and 100% of the 400 PTFs (Table 4).
A random selection of 20% of the 729 datasets was used to validate
the six PTFs and the process repeated for 400 times.

After 400 times of validation run, there was nomore obvious differ-
ence in the performance and stability of the six PTFs (Fig. 4a, b & c). The
ranges of AIC, RMSE andR2 aswell as those of SDwere similar for the six
PTFs and alsohad similarmeans for the three indicators. The results sug-
gested that the coefficient of any of the 400 PTF runs was good enough
for to produce the best PTF result. Moreover, 20 of the 400 validations
were randomly selected to check the performance of the six PTFs
under the same validation data (Fig. 5). Although the performance
changed significantly for different validation datasets, it was largely
similar for the same validation dataset. It therefore concluded that the
quality of PTF simulation result depended largely on the validation
s of Akaike's information criterion (AIC), root mean square error (RMSE) and coefficient of

Image of Fig. 4
Image of Fig. 5
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data used, which can be highly random. The different R2 values for the
400 PTFs were due mainly to the changes in validation datasets. To
achieve a high estimation quality, it was important to repeatedly run
validation analysis during the development of PTF.

4. Conclusions

In this study, 729 soil sample data were collected from 243 sites in
the Loess Plateau and used developed PTF for the estimation of Ks

using two separate methods (MLR and ANN) and the results summa-
rized as follows:

(1) Spatial variation inKs at regional scalewasmoderate (CV=67%).
Correlation analysis showed that the primary factors driving re-
gional distribution of Ks were BD, SSWC, Clay, Silt and Latitude.

(2) A total of 400 times of development and validation showed that
the performances of PTF developed byMLR and ANNwere loose-
ly similar. As the stability of PTF developed by ANN was weak,
that developed by MLR method was preferred for application in
developing PTF to estimate Ks. Soil bulk density, and silt and
clay contents were also important for the estimation of Ks in
the Loess Plateau.

(3) As the randomness of the validation dataset had a significant
effect on the indicators used to evaluate the quality of PTF, it
was necessary to repeatedly validate PTF during the process of
contrasting and selection.
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