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Sediment and turbidity are primary causes of impaired river ecosystems; remedial action for these impairments
requires the identification of their sources and controlling factors. This paper examines the combined effects of
watershed complexity in terms of land use and physiography on the specific sediment yield of the upper Du
River watershed (8973 km2) in China. The land use composition, land use pattern, morphometric variables,
and soil properties of the watershed were calculated at the subwatershed scale and considered to be potentially
influential factors. Because these watershed characteristics are highly codependent, a partial least-squares re-
gression (PLSR) was used to elucidate the linkages between the specific sediment yield and metrics composed
of 19 selectedwatershed characteristics. The first-order factorswere identified by calculating the variable impor-
tance for theprojection (VIP). The results revealed that the landuse composition and landusepattern exerted the
largest effects on the specific sediment yield and explained 65.2% of the variation in the specific sediment yield. A
set of physiographic indices was also found to have a large effect on the specific sediment yield and explained
17.7% of the observed variation in the specific sediment yield. The following are the dominant first-order factors
of the specific sediment yield at the subwatershed scale: the areal percentages of agriculture and forest, patch
density, value of the Shannon's diversity index, contagion, value of the hypsometric integral, and saturated soil
hydraulic conductivity. The watershed size exerted a substantial effect on the sediment delivery ratio (SDR).
The VIP values also suggested that the Shannon's diversity index, contagion, and hypsometric integral are impor-
tant factors in the SDR. With a readily available digital spatial database and rapid developments in geographic
information system (GIS) technology, this practical and simple PLSR approach could be applied to a variety of
watersheds.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Sediment is a natural constituent of rivers; however, excess sedi-
ment loading in rivers is a leading cause of degraded water quality
and impaired aquatic ecosystems. Remedial actions require the identifi-
cation of the sediment loading sources and the factors that control this
loading (Belmont et al., 2011). Despite extraordinary efforts, sediment
resulting from soil erosion remains one of the most difficult nonpoint
source pollutants to quantify (Wu and Chen, 2012). Soil erosion is con-
tingent onmultiple factors, including climate, soil, topography, and land
use (Wei et al., 2012); thus, soil erosion is typically episodic and highly
localized (Trimble and Crosson, 2000).Moreover, eroded sedimentmay
rapidly exit thewatershed or be stored for longperiods of time (Bracken
et al., 2013). In recent decades, numerous process-based erosionmodels
have been developed (de Vente et al., 2013). However, the application
and Environment, Huazhong
86 27 87288249; fax: +86 27
of these models suffers from a need for extensive parameterization
and calibration, which is often problematic because of the low quality
of available input data (Jetten et al., 2003). Not surprising, many studies
on the estimation of sediment yield are based on empirical models of
soil erosion and require a scalar reduction factor to estimate the sedi-
ment yield as a fraction of erosion, e.g., the sediment delivery ratio
(SDR) (Lu et al., 2005). The concept of the sediment delivery problem
was introduced by Walling (1983). According to this concept, only a
fraction of the gross soil erosionwithin a catchmentwill reach the outlet
and be represented as the sediment yield. However, few studies have
provided information on how to quantify this reduction factor, and
the available observations have indicated diverse and highly nonlinear
scaling with respect to watershed characteristics (de Vente et al.,
2007; Belmont et al., 2011; Baartman et al., 2013).

Our ability to manage landscape sediment routing and their re-
sponse to anthropogenic influences depends on our ability to accurately
estimate sediment yield and identify the controlling factors (Fu et al.,
2009; Ali and De Boer, 2010). With readily available digital data sets,
such as digital elevation models (DEMs), remote sensing images, and
soil databases, investigators have relied on watershed characteristics
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(e.g., topography, land uses, and soil types) as sediment yield predictors
(Hassan et al., 2008; Ouyang et al., 2010; Tramblay et al., 2010; Xin et al.,
2011; Kuhnert et al., 2012). The reliability of sediment source estimates
can be improved using multiple overlapping measurement methods
within geographic information systems (GIS). The relationships be-
tween watershed characteristics and the sediment yield dynamics
have a large potential as an inexpensive complementation to ground-
based monitoring. This approach is strengthened by a suite of new re-
search tools that allow for the rapid and precise dating of land surfaces
and high-resolution topography measurements.

Despite the substantial potential of analyzingwatershed characteris-
tics and indicator approaches, these techniques also present particular
analytical challenges. Multivariate approaches commonly have been
used to relate various watershed characteristics to the sediment yield
at different scales, such as at the micro- and meso-watershed and
river basin scales (Ouyang et al., 2010;Xin et al., 2011). However,water-
shed characteristics (including topography, land use, geology, and soil)
are highly collinear or codependent and are not independent predictors.
This lack of independence can confound correlative analyses and yield
potentially misleading results. Moreover, land-use types within a wa-
tershed also tend to be patchy and spatially autocorrelated. Spatial auto-
correlation may be particularly problematic in watershed studies
because the locations of these land-use types often correspond to an
underlying pattern in the landscape (King et al., 2005). Consequently,
the apparent relationships between land use and sediment yields with-
in watersheds could easily be explained by physiographic factors that
necessarily co-vary with land-use patterns. Thus, many apparent rela-
tionships between land use and sediment yields in watersheds may be
spatially confounded.

The inherent limitations of traditional multivariate approaches in
handling multicollinear and noisy data can be overcome by applying
multivariate statistical projection techniques. For example, principal
component analysis is one of the most widely used techniques for re-
ducing the redundancy and dimensionality of input data. Partial least-
squares regression (PLSR) is a new technique that combines features
of principal component analysis andmultiple linear regression and gen-
eralizes these two analytical approaches (Wold et al., 2001; Abdi, 2010).
The PLSR can handle highly correlated noise-corrupted data sets by
explicitly assuming dependency among the variables and estimating
the underlying structures, which are essentially linear combinations of
the original variables (Carrascal et al., 2009). Another striking feature
of PLSR is that it is particularly suitable for multivariate problems
when the number of observations is less than the number of possible
predictors (Onderka et al., 2012; Shi et al., 2013).

Previously, we developed quantitative relationships between sedi-
ment yield and land cover changes and land cover patterns within the
upper Du River watershed in China (Shi et al., 2013; Yan et al., 2013).
However, soil erosion and the resulting sediment export are caused by
stochastic rainfall events and the combined effects of soil, topography,
and land use (Wei et al., 2009). Quantifying the effects of watershed
characteristics on sediment yield is essential for effective watershed
management. Therefore, in this study the upper Du River watershed
was chosen as the case study area. The PLSR was used to explore the re-
lationships between watershed characteristics and both the specific
sediment yield and SDR. The objectives of this study are the following:
(i) to determine how the specific sediment yield is related to catchment
size, topography, land-use composition, and land use patterns at the
subwatershed scale; (ii) identify the characteristics that exert major
and minor effects on the specific sediment export; and (iii) develop an
empirical model for SDR as a function of the watershed characteristics.

2. Study area

The Danjiangkou Reservoir area (DRA), which is located in central
China, is a useful and important setting for assessing the effects of
watershed characteristics on sediment yield. The distribution of water
resources is spatially uneven in China. The northern regions of China,
which are similar in land area and population to the southern regions,
contain only 18% of the total water supply despite comprising 65% of
the total arable land. To mitigate the existing water crisis, China imple-
mented the Middle Route Project under the South-to-North Water
Transfer Project. The Danjiangkou Reservoir on the Han River, which is
a tributary of the Yangtze River, is the water source for the Middle
Route Project and supplies 13.8 billion m3 of water annually to the
northern regions of China (Fig. 1). Guaranteeing the quality of the trans-
ferred water has become an important concern for local and national
policy makers.

The upper Du River watershed (31°30–32°27′ N., 109°11–110°25′
E.) is located in the DRA and covers 8973 km2 (Fig. 1). This watershed
is representative of the DRA in terms of its natural resources, land-use
patterns, and population. Gauge records of the watershed's discharge
and sediment yield have been collected since 1965. The topography of
the watershed is characterized by mountain ranges, steep slopes, and
deep valleys; and the elevation ranges from 220 to 2833 m. This area
has a typical subtropical monsoon climate. The average yearly tempera-
ture is ~14.3 °C, and the average annual precipitation is approximately
973 mm, most of which falls during the monsoon season (June to
October). According to the Chinese soil classification system, the
major soil types include yellow-brown soil, brown soil, Chao soil, and
purple soil (National Soil Survey Office, 1998), which correspond to
Alfisols (yellow-brown and brown soils), Entisols (Chao soil), and
Inceptisols (purple soil) according to the American soil taxonomy (Soil
Survey Staff, 1999). The principal land cover type in this watershed is
forest. The villages, small towns, and agricultural land in the watershed
are concentrated along the river. Moreover, the major crops are corn
(Zea mays L.) and wheat (Triticum aestivum L.).

3. Methods

3.1. Data collection

The data sources for this study included observational data from
government agencies (e.g., the Soil Survey Office of Hubei Province
and the Changjiang River Water Resources Commission) and data
extracted from our previously published studies (Shi et al., 2013; Yan
et al., 2013). Specifically, land cover data for the years 1978, 1987,
1999, and 2007 were obtained from the Changjiang River Water
Resources Commission. The land cover maps were generated from
Landsat images, which were obtained from the Landsat archive
(http://glovis.usgs.gov/). The accuracy of the land-cover types in the
area was assessed before the data were released. The topographical
information was produced from a digital elevation model (DEM) with
a resolution of 25 m by 25 m that was purchased from the National
Geomatics Center of China. The soil data, including a soil type map (on
a scale of 1:100,000) and information on the related soil properties,
were obtained from the Soil Survey Office of Hubei Province. Climate
data (which included daily data on precipitation, maximum and mini-
mum temperature, solar radiation, humidity, wind speed and direction,
and sunshine duration) were available from nine weather stations lo-
cated within or close to the watershed (Fig. 1). Daily average discharge
and sediment yield data from the Zhushan gauging station were avail-
able for the period 1965–2010.

3.2. Ungauged sub-watershed sediment yield

Only one gauge station (Zhushan) is located at the outlet of the
upper Du River watershed (Fig. 1); thus, hydrologic modeling was re-
quired to estimate the discharge and sediment yield for the ungauged
sub-watersheds. The Soil and Water Assessment Tool (SWAT) is one
of the most suitable models for simulating runoff and sediment yield
in large complex watersheds with varying soils and varying land-use
and management conditions (Gassman et al., 2007). The SWAT is a

http://glovis.usgs.gov/


Fig. 1. Locations of the study watershed, digital elevation model (DEM), drainage system, gauge station, and weather stations.
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physically based watershed-scale model that can be used to analyze
small or large catchments by discretizing them into subbasins, which
are then further subdivided into hydrological response units (HRU),
each of which is homogeneous in terms of land use, soil type, and
slope. Runoff is predicted separately for each hydrologic response unit
and routed to obtain the total runoff for the whole watershed in the
SWAT model. In each HRU, runoff is modeled with various aspects
considered, e.g., canopy storage, infiltration, redistribution, evapotrans-
piration, interflow, ponds, tributary channels, and return flow. Using a
variable storage coefficientmethod providedbyWilliams (1969), runoff
is routed through the channel. Erosion and sediment yield are estimated
for each HRU with the Modified Universal Soil Loss Equation (MUSLE)
with rainfall energy in theUniversal Soil Loss Equation (USLE)model re-
placed by a runoff factor (Williams, 1975). This increases the sediment
yield prediction accuracy and eliminates the need for delivery ratios.
Using a function of the peak channel velocity, sediment routing to a
total sediment yield of the watershed is modeled with deposition and
degradation considered. Numerous SWAT applications have been used
to study hydrology and sediment yield in small and large catchments
in various regions of the world (see the SWAT literature database:
https://www.card.iastate.edu/swat_articles/index.aspx).

A SWAT project was built for the upper Du River watershed after
preparing the necessary maps (land cover, soil, and DEM) and database
files (e.g., climate and soil properties) using the collected data. The
upper Du River watershed was divided into 107 sub-watersheds using
the SWAT model. The daily discharge and sediment data measured at
the Zhushan gauge station were used to calibrate and validate the
model. The model was run to simulate daily results for a period of
20 years. The subperiod from 1971 to 1980was used for the calibration;
the subperiod from 1981 to 1990 was used for the validation. After a
sensitivity analysis was performed, 10 principal factors that are associ-
ated with stream flowwere determined. The five indices related to sed-
iment yield were subsequently calibrated and validated. Three model
evaluation parameters were used in accordance with the
model evaluation guidelines proposed by Moriasi et al. (2007): (i) the
Nash–Sutcliffe efficiency index (ENS), (ii) the percent bias (PBIAS), and
(iii) the coefficient of determination (R2). According to Moriasi et al.
(2007), a model simulation is judged to be satisfactory if ENS N 0.5,
R2 N 0.5, and PBIAS = ±25% for flow and if ENS N 0.5, R2 N 0.5, and
PBIAS= ±55% for sediment.

The calibrated model performed well, yielding ENS and R2 values of
0.88 and 0.94, respectively, for the discharge and ENS and R2 values of
0.67 and 0.84, respectively, for the sediment yield. The PBIAS values
were 6.4% and 19.8% for the discharge and sediment yield, respectively.
The statistical analysis of the data demonstrated a reasonable agree-
ment between the observed and simulated values during the valida-
tion period. The observed R2 and ENS values were 0.92 and 0.87,
respectively, for the discharge; and the observed R2 and ENS values
were 0.81 and 0.64, respectively, for the sediment yield. The PBIAS
values were 5.1% and 32.1% for the discharge and sediment yield, re-
spectively. A detailed procedure for calibrating and validating the
model has been previously published (Yan et al., 2013). The calibrated
model was used to estimate the soil erosion and sediment yield for
the 107 ungauged sub-watersheds (Fig. 2).

3.3. Potential factors that control the specific sediment yield

Data on the potential controlling factors considered in the statistical
analysis were extracted for each sub-watershed to describe the sub-
watershed characteristics. A total of 19 watershed descriptors were

https://www.card.iastate.edu/swat_articles/index.aspx
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Fig. 2. Soil erosion and specific sediment yield distribution of each sub-watershed.
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considered to be potential factors affecting the sediment yield. These
selected descriptors have been commonly used in previous studies
concerning the role of watershed characteristics in sediment yield
(Verstraeten and Poesen, 2001; Restrepo et al., 2006; Tamene et al.,
2006; Ali and de Boer, 2008; Haregeweyn et al., 2008; de Vente et al.,
2011; Xin et al., 2011; Shi et al., 2013). These watershed characteristics
were divided into four classes: morphometric, soil property, land-use
composition, and land-use pattern. Within each class, several indices
were calculated (Table 1). Land-use patterns were analyzed with the
program FRAGSTATS 4.0 (McGarigal et al., 2012), which is a widely
accepted tool for quantifying landscape metrics. A preliminary analysis
demonstrated thatmany of thewatershed characteristics were collinear
(Table 2). The Agostino–Pearson K2 test was used to determine if the
sample came from a normally distributed population. The Agostino–
Table 1
Abbreviations and descriptions of the selected variables for watershed characteristics.

Predictors Abbr. Description

Morphometric variables
Watershed area AREA Area of the sub-w
Slope gradient SLOPE Average percent s
Basin relief HD Height difference
Basin length HL Horizontal length
Relief ratio RR Ratio between th
Hypsometric integral HI HI = (Hmean − H
Topographic wetness index TWI TWI = ln(α/tan(

Soil variables
Soil erodibility RUSLE-K K is calculated us
Hydraulic conductivity Ksat Saturated soil hyd
Soil organic matter SOM Organic matter co

Land-use composition
Agricultural land use AGRI Percentage of the
Forest land use FOREST Percentage of the
Grass land use GRASS Percentage of the
Urban area URBAN Percentage of the

Land-use pattern
Patch density PD Number of patche
Edge density ED Total length of all
Patch cohesion index COHE An index of the p
Contagion CONTAG Tendency of the p
Shannon's diversity index SHDI An index based o
Pearson K2 test determines the skewness to quantify the asymmetry of
a distribution and the kurtosis to quantify the shape of the distribution
(D'Agostino et al., 1990). When necessary, the predictors were
Napierian logarithm-transformed (ln) to achieve a normal distribution.

3.4. Partial least-squares regression

A partial least-squares regression (PLSR) revealed that the specific
sediment yields of the 107 sub-watersheds within the upper Du River
watershed were related to the watershed characteristics. We used
SIMCA-P + 13.0 (Umetrics AB, Sweden) to perform the PLSR. The
basic PLSR algorithm is not described in this paper; however, further
information on PLSR can be obtained from Umetrics (Umetrics, 2012).
A PLSR model was constructed to identify the primary watershed
atershed
lope gradient of the sub-watershed
between the outlet (Hmin) and the highest point (Hmax) in the sub-watershed
between the outlet and the most remote point in the sub-watershed
e basin relief (HD) and the basin length (HL)
min) / (Hmax − Hmin), where Hmean is the mean elevation of the watershed
β)), where α is the upslope area per unit contour length and tan(β) is the local slope

ing the formula described by Renard et al. (1997)
raulic conductivity
ntent of the soil

watershed devoted to agricultural land use
watershed with forest coverage
watershed with grass coverage
watershed corresponding to urban areas

s per unit area (number per 100 ha)
edge segments per hectare for the considered landscape
hysical connectedness of the corresponding patch type
atch types to be aggregated
n information theory that indicates the patch diversity in a landscape
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characteristics that control the specific sediment yield. In thismodel, the
independent variables were the selected watershed descriptors and the
dependent variable was the specific sediment yield for the 107
subwatersheds. To avoid overfitting, the appropriate number of PLSR
model components was determined using cross-validation to achieve
an optimal balance between the explained variation in the response
(R2) and the predictive ability of the model (goodness of prediction,
Q2). In PLSR modeling, the importance of a predictor for the indepen-
dent and dependent variables is indicated by the variable importance
in the projection (VIP). The terms with high VIP values are the most
relevant in explaining the dependent variable. The cross-validated
goodness of prediction (Q2), percentage of variation explained by the
independent variables, and cross-validated root mean squared error
(RMSECV) between the predicted and observed values of each individ-
ual pass were determined for each model. The regression coefficients of
the PLSR model were used to show the direction of the relationship
between each of the individual watershed characteristics and specific
sediment yield.

Because the PLSR weights are linear combinations of the original
variables that define the scores, they can be used to describe the quan-
titative relations between the predictors and the response. An empirical
model for the SDR was developed using PLSR. All watershed character-
istics do not have to be included in this model; redundant variables can
lead to PLSR models with low statistical significance. Therefore, the fol-
lowing PLSR analysis process was followed to obtain an optimal model.
First, a simulation was conducted using the PLSR model with all of the
predictors. Next, a series of simulations using new PLSR models was
performed inwhich each newPLSR analysiswas conducted by eliminat-
ing a variable. The new PLSR model with the largest Qcum

2 was selected.
This procedure was repeated until two predictor variables remained.
Finally, the model with the largest Qcum

2 was selected as the optimal
SDR model.

4. Results

4.1. Descriptive statistics of measures

Table 3 shows that the specific sediment yield of the 107 sub-
watersheds varied substantially, i.e., from 0.48 to 21.43 t ha−1 y−1,
and the SDR also varied substantially, i.e., from 0.12 to 0.69. The SDR
was less variable than the specific sediment yield according to the coef-
ficient of variation (49.3% vs. 136.6%, respectively). The characteristics of
the 107 sub-watersheds used in the analysis exhibited a broadvariation.
The sub-watersheds ranged in size from376 to 29,029ha. Themean for-
est use was 71.7%, and the mean agricultural and urban land usages
were only 7.2% and 1.9%, respectively. The forest area varied from 9.6%
to 98.8%. Moreover, the percentage of agricultural land usage varied
from 0% to 48.2%. The patch density (PD), which is a measure of land-
use patterns, varied from 0.61 to 24.59 per 100 ha, and the edge density
(ED) varied from 12.0 to 145.0 m ha−1. Interestingly, the coefficients of
variation (CV) for urban land use, agricultural land use, sediment yield,
patchdensity (PD), edge density (ED), basin length (HL),watershed size
(AREA), and Shannon's diversity index (SHDI) were N70%, which dem-
onstrates that these variables exhibited a larger variation than the other
factors. The CVs of the topographic wetness index (TWI), hypsometric
integral (HI), and patch cohesion index (COHE) were relatively small,
i.e., b10%.

4.2. Relating watershed characteristics to specific sediment yield

A summary of the PLSR model that was constructed for determining
the specific sediment yield is presented in Table 4. The prediction error
decreased as the number of components increased; the minimum
RMSECV occurred when three components were used. A further
increase in the number of components resulted in higher prediction
errors, suggesting that the subsequent components were not strongly



Table 3
Summary statistics for the sediment yield and selected watershed characteristics in this study.a

Category Variables Units Minimum Maximum Mean Standard deviation

Sediment Sediment yield t ha−1 y−1 0.48 21.43 3.79 5.18
SDR None 0.12 0.69 0.36 0.17

Morphometric variables AREA ha 376 29,029 8476 6341
SLOPE degree (°) 4.8 36.4 26.9 5.7
HD m 466 2332 1325 479
HL m 12,698 105,967 24,314 19,488
RR m m−1 0.014 0.286 0.081 0.05
HI none 0.20 0.61 0.38 0.08
TWI none 3.94 7.24 6.1 0.46

Soil variables RUSLE-K t ha h ha−1 MJ−1 mm−1 0.028 0.043 0.032 0.003
Ksat mm h−1 5.35 14.38 7.48 2.20
SOM % 1.017 2.354 1.403 0.265

Land-use composition URBAN % 0 20.3 1.9 3.6
FOREST % 9.6 98.8 71.1 28.9
GRASS % 1.3 37.4 7.4 8.5
AGRI % 0 48.2 7.2 10.4

Land-use pattern PD Number per 100 ha 0.61 24.59 5.67 4.25
ED m/ha 12.0 145.0 66.3 30.8
COHESION None 90.8 99.7 98.3 1.6
CONTAG % 27.0 92.7 61.6 15.8
SHDI None 0.08 1.57 0.87 0.41

a Abbreviations for the watershed characteristics are listed in Table 1.

198 Z.H. Shi et al. / Geomorphology 226 (2014) 193–201
correlated with the residuals of the predicted variable (Carrascal et al.,
2009). The first component explained 65.2% of the sediment yield vari-
ation in the data set. The addition of the second component increased
the model-explained variance to 82.9%. Adding more components to
the PLS models did not substantially improve explained variance
(Table 4). Fig. 3 (weight plot) shows that the first dimension consisted
primarily of land use composition and pattern variables, such as the ag-
ricultural and forest land use (AGRI and FOREST); and the patch density
(PD), Shannon's diversity index (SHDI), and contagion (CONTAG). AGRI,
PD, and SHDI were positively correlated with the specific sediment
yield, whereas FOREST and CONTAG were negatively correlated with
the specific sediment yield (Fig. 3). The second component was domi-
nated by soil erodibility (USLE-K) and basin relief (HD) on the positive
side and the hypsometric integral (HI) and saturated hydraulic conduc-
tivity (Ksat) on the negative side.

Although the weight plot (Fig. 3) indicates the importance of the
individual catchment characteristics to the specific sediment yield, a
more convenient and comprehensive expression of the relative impor-
tance of the predictors can be obtained by examining their VIP values.
Fig. 4 illustrates theVIP values for specific sediment yield; the regression
coefficients are plotted against the watershed characteristics that were
grouped into four main categories (morphometric variables, soil
properties, land-use composition, and land-use pattern); the water-
shed characteristics are shown in descending order within each cat-
egory. The highest VIP values were obtained for AGRI (VIP = 1.64;
b = 0.44) and FOREST (VIP = 1.47; b = −0.14), followed by PD
(VIP = 1.25; b = 0.15), SHDI (VIP = 1.19; b = 0.11), RUSLE-K
Table 4
Summary of the PLSR model for specific sediment yield.

R2 Q2 Component % of explained
variability in Y

Cumulative explained
variability in Y (%)

RMSECV
(t/ha/y)

Q2
cum

0.88 0.82 1 65.2 65.2 2.85 0.695
2 17.7 82.9 2.29 0.803
3 4.8 87.7 2.04 0.824
4 1.7 89.4 2.18 0.815
5 0.6 90.0 2.26 0.798
(VIP = 1.19; b = 0.05), CONTAG (VIP = 1.17; b = −0.08),
HI (VIP = 1.09; b = −0.11), Ksat (VIP = 1.09; b = −0.07), URBAN
(VIP = 1.03; b = 0.16), and HD (VIP = 1.00; b = 0.07). The specific
sediment yield appears to be lower for higher CONTAG, HI, and Ksat
values (as indicated by the negative regression coefficients). As expect-
ed, a higher percentage of agricultural land use was correlated with a
higher sediment yield (as indicated by the positive regression coeffi-
cient), whereas a higher percentage of forest cover was associated
with a lower sediment yield (as indicated by the negative regression
coefficient). We should note that all of the considered variables were
to some extent related to the specific sediment yield; however, only
certain variables had VIP values N 1. Predictors with VIP values b 1
were considered to be of minor importance for prediction purposes
(Umetrics, 2012); therefore, the subsequent discussion is restricted to
variables with VIP values N 1.
Fig. 3.Weight plot of thefirst and second PLSR components for the specific sediment yield.
Predictors with the highest weights on the individual components are highlighted with
circles. The abbreviations for the watershed variables are listed in Table 1.

image of Fig.�3


Fig. 4. Variable importance for the projection (bars) and regression coefficients (lines) of each predictor (watershed variable). The predictors were ranked within each group (morpho-
metric variables, soil properties, land-use composition, and land-use pattern) in descending order based on their VIP values. The important predictorswith VIP N 1 are consecutively num-
bered to show their relative importance. Regression coefficients show the direction in which the predicted response (sediment yield) depends on the predictors. The straight solid line
indicates a threshold above which the predictors are considered to be important for predictive purposes. The abbreviations for the watershed variables are listed in Table 1.
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4.3. Modeling the sediment delivery ratio (SDR)

The application of the PLSR regression process to the data for the 107
sub-watersheds resulted in the following optimal SDR model:

SDR ¼ 0:46þ 4:74 ln AREAð Þ−1−0:49 HIð Þ−0:13 ln CONTAGð Þ þ 0:12 SHDIð Þ
Q2

cum ¼ 0:66;R2 ¼ 0:76; RMSECV ¼ 0:09
� �

:

ð1Þ

The Qcum
2 value of the optimal SDR model was 0.66, which indicates

the good predictive ability and robustness of the model. The validation
of the best PLSR predictionmodel is illustrated using plots that compare
the actual and predicted SDR values (Fig. 5). The predictive equation
was found to be reasonable for SDR values in the range of 0.093 to
0.682. The optimal SDR model extracted two PLSR components that
were relevant to four predictor variables (Table 5). The factors that
governed SDR can be interpreted using the VIP and PLSR variable
weights that were included in the optimal SDR model. The sub-
Fig. 5. Plots of the actual and predicted sediment delivery ratios (SDRs).
watershed area dominated the first component of the PLSR model for
SDR and had the highest VIP value (1.426). As expected, increases in
HI and CONTAG were associated with lower SDRs (as indicated by the
negative regression coefficients), whereas an increase in SHDI was
associated with a higher SDR. To validate the SDR model, ~70% of the
107 sub-watersheds were randomly selected and used to develop a
new PLSR model using the same descriptors. The new model was then
used to predict the SDRs of the remaining 30% of the sub-watersheds.
The procedure was repeated 10 times. The average Qcum

2 was 0.61, and
the average coefficient of determination (R2) for the SDRs excluded
from the models was 0.69. These results indicate the good predictive
ability and robustness of the optimal SDR model.

5. Discussion

We addressed the relative importance of watershed characteristics
on the specific sediment yield in 107 sub-watershedswith diverse phys-
iographic features and land uses. We extracted two PLSR components
that are relevant to nine watershed characteristics (Fig. 3). The first
and second components represent land use (including composition
and pattern) and physiographic characteristics (including morphomet-
ric variables and soil properties), respectively. Therefore, the land-use
composition and patterns exert the largest effect on sediment yield;
the physiographic watershed characteristics are second-order effects.
Focusing only on variables with VIP values N 1 (Fig. 4), the most impor-
tant variable for the specific sediment yield was agricultural land use
(AGRI), which exhibited a positive regression coefficient, indicating
that agricultural land use is a primary sediment source. The second
Table 5
VIP values and PLSR weights for the sediment delivery ratio model.a

Predictorb VIP W*[1] W*[2]

AREA 1.456 −0.876 −0.122
SHDI 1.209 0.083 0.476
CONTAG 1.155 −0.128 −0.611
HI 0.997 0.083 −0.476

a The bold-faced numerical values indicate that the PLSR components are primarily
loaded on the corresponding variables.

b Abbreviations for the landscape variables are listed in Table 1.
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most important variable was the areal percentage of forest (FOREST),
followed by PD, SHDI, RUSLE-K, CONTAG, HI, Ksat, URBAN, and HD.
Previous work has shown that the amount of eroded sediment is largely
determined by the absence of protective land cover, whereas sediment
delivery to rivers is determined by on-site eroded sediment and the re-
lationships between sediment sources and rivers (Bakker et al., 2008).
The latter factor is also a function of land use because runoff processes,
which carry eroded sediments to rivers, vary for different land cover types
(VanOost et al., 2000; Bracken et al., 2013). Thus, land use patterns define
the characteristics of the eroded sediment and its transport processes by
accelerating or reducing the runoff rate (Shi et al., 2013).

The matrix, patches, and corridors are considered to be three land-
scape components (McGarigal et al., 2012). Within the study area's
sub-watersheds, forest constituted an average of 71.1% of the total
area (Table 3), which indicated that forest was the matrix for these
sub-watersheds. High PD and SHDI values indicate the presence of
many small patches of various land-use types in the watersheds and
reflect the degree of forest fragmentation. Highly fragmented forests
may not function effectively at decreasing surface runoff and eroded
sediment from human-dominated land uses, e.g., agricultural and
rural residential land. Thus, the specific sediment yield was positively
associated with PD and SHDI (Fig. 3). This positive correlation indicates
a higher sediment export when watersheds are characterized by many
different land-use types that are small and interspersed (e.g., Ouyang
et al., 2010; Memarian et al., 2012). Especially, Ziegler et al. (2007)
quantified the effects of patchiness and the optimized patch arrange-
ment of different land cover types to reduce runoff in two catchments
in Vietnam. The CONTAG variable is associated with the dispersion
and interspersion of land-use types; its value approaches 0 when
land-use types are maximally disaggregated and interspersed and
approaches 100 when all land-use types are maximally aggregated
(McGarigal et al., 2012). In the present study, the CONTAG variable
was consistently and negatively related to the specific sediment yield.
The negative effects of the interspersion and diversity of land-use
types within the watersheds are primarily associated with human-
dominated land uses, e.g., urban and agricultural land. These results
are consistent with previously reported negative relationships of
CONTAG with nonpoint sources of pollution in watersheds (Xiao and
Ji, 2007; Lee et al., 2009).

According to Milliman and Syvitski (1992), the topography and
basin area are the major factors in the sediment yield of most rivers,
with climate, geology, and land use exhibiting second-order effects.
However, our results suggest that the physiographic features of water-
sheds are second-order effects; the negative relationship between the
specific sediment yield and drainage area for the study area's sub-
watersheds was weak (Fig. 3). We could conclude that although the
specific sediment yield was a result of the normalization of sediment
yield by watershed area, it was negatively influenced by basin area
slightly, which indicated a tender scale effect on sediment yield. It
might be because the sub-watershed area being small and spanning
less than one order of magnitude (Table 3) that the scale effect was
not significant. The inverse relationship between SDR and the water-
shed area in Eq. (1) is strong. The SDR is the ratio of the sediment
yield at the watershed outlet to the gross soil erosion within the water-
shed. The sediment yield at the river outlet reflects the sum of all ero-
sional and depositional processes that occur within the watershed
(Restrepo et al., 2006). For larger watersheds, depositional processes
are relatively more important (de Vente et al., 2007; Ayadi et al., 2010).
Furthermore, HI and HD represent the elevation distribution and erosive
power within a watershed (Tamene et al., 2006). Indeed, the VIP values
(Fig. 4) demonstrate that HI andHD can be regarded as important factors
in the specific sediment yield (VIP N 1). The negative regression coeffi-
cient of HI indicates that the specific sediment yield decreases with
increasing HI, whereas the specific sediment yield increases with HD,
as shown by the positive regression coefficient for HD. These results
are consistent with the findings of Restrepo et al. (2006) and Tamene
et al. (2006). The VIP values and regression coefficients of RUSLE-K and
Ksat also suggest interesting patterns. These patterns are thought to be
related to the inherent sensitivity of erosional processes and substantial
effects of these factors on specific sediment yield. The results are consis-
tent with our initial hypotheses that higher soil erodibility produces
more eroded sediments and lower saturated hydraulic conductivity
produces more surface runoff, which results in more sediment export.

This study reveals a strong influence of land use composition and pat-
terns on the specific sediment yield of a watershed. Therefore, sediment
export primarily results frommultiple land use activities; however, sep-
arating the individual effects of sediment yield is difficult. Understand-
ing the consequences of multiple land uses on sediment yield is best
achieved on a watershed scale in which the watershed is divided into
subwatersheds that are characterized by different human activities
(Lu et al., 2005; Bakker et al., 2008; Baartman et al., 2013). Although
our goal was to identify the primary factors that affect watershed-
scale specific sediment yield, we also suggest that incorporating water-
shed characteristics, such as morphometric variables, soil properties,
land-use composition, and land-use patterns, which can be easily
computed from a digital land-use map, DEM, and a soil map, can sub-
stantially improve the assessment of sediment delivery and export in
watersheds with no sufficient data monitored (Tramblay et al., 2010).
To accommodate the highly correlated nature of the variables that are
related to watershed characteristics, we used the PLSR approach in
conjunction with the variable influence of the projection approach.
The PLSR methodology is beneficial because it enables the elimination
of confounding relationships among variables and encourages a more
unbiased view of the contribution of watershed characteristics to sedi-
ment yield (Wang et al., 2014). Therefore, some credible conclusions
in this study could be interpreted with multicollinear and noisy data
eliminated in the PLSR approach. In the SDR model, four independent
factors (AREA, HI, CONTAG, and SHDI) (Table 4) were picked out from
these 19 variables in four categories (Table 3), with AREA and HI be-
longing to morphometric variables and CONTAG and SHDI belonging
to land use pattern. To specific sediment yield, land use composition
factors (AGRI and FOREST) and soil properties (RUSLE-K and Ksat)
had vital impact with VIP N 1 (Fig. 4). This indicated that soil variables
and land use composition had less effect on SDR than on specific sedi-
ment yield. In addition, HI was considered as an incredibly important
factor to increase the accuracy and robustness of SDR predicting, for
the values of R2 (0.76) and Qcum

2 (0.66) in this SDR model with HI
were higher than those (R2 = 0.58, Qcum

2 = 0.55) in our former study
(Shi et al., 2013).

6. Conclusions

In this study, we investigated the effect of watershed characteristics
on the specific sediment yield at the sub-watershed scale using PLSR,
which is a technique that is relatively insensitive to confounding rela-
tionships among predictor variables. The major factors that affect
specific sediment yield were found to be the land-use composition
(agricultural land use vs. forest) and land-use patterns (the diversity
and dispersion of land-use types), which together explained 65.2% of
the variation observed in the sediment yield. A set of physiographic
indices (including the soil erodibility, hypsometric integral, saturated
hydraulic conductivity, and basin relief)was also found to have substan-
tial effects on the specific sediment yield. In addition, our study found
that the dominant first-order factors in the specific sediment yield at
the subwatershed scale were the areal percentages of agriculture and
forest, which were followed by PD, SHDI, RUSLE-K, CONTAG, HI, Ksat,
URBAN, and HD. The watershed size was found to have a substantial ef-
fect on the sediment delivery ratio (SDR). Our results also indicated that
physiographydetermines the complexity and organization of the studied
watersheds and has a substantial effect on sediment delivery and export.

Measurements of sediment yield are sparse in large-scale water-
sheds; the majority of subwatersheds in the case study watershed are



201Z.H. Shi et al. / Geomorphology 226 (2014) 193–201
not gauged. Thus, themodelingmethod used in this study appears to be
a practical approach for providing sediment yield information.With the
availability of digital spatial databases (such as DEM, remote sensing
images, and soil data) decision makers are able to quantify watershed
characteristics over wide areas using GIS. The PLSR approach provides
a simple method for determining the relationship between predictors
and the specific sediment yield inwatersheds and provides quantitative
information that enables decision makers to makemore informed deci-
sions regarding watershed management.
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